Skip to main content
Log in

Quantitative assessment of photostability and photostabilisation of Fluvoxamine and its design for actinometry

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Despite the numerous concerns that have been raised in relation to considering 0th, 1st and 2nd-order kinetic treatments for photodegradation characterisation and assessment of drugs, they still are employed, as they are the only tools available for these types of studies. The recently developed Φ-order kinetic models have opened new perspectives in the treatment of photoreaction kinetics and stand as the best known alternative to the classical approach. The Φ-order kinetics have been applied here to Fluvoxamine (Fluvo) with the aim of setting out a detailed and comprehensive procedure capable of rationalising photodegradation/photostability of drugs and proposing a platform for photosafety studies. Our results prove that quantum yields of drugs (0.0016 < ΦλirrFluvo < 0.43) should a priori be considered wavelength-dependent; their photostabilisation (up to 75% for Fluvo) by means of absorption competitors can explicitly be related to a decrease of the photokinetic factor, and photoreversible drugs can be developed into efficient actinometers (as Fluvoxamine in the 260–290 nm range). A pseudo-rate-constant factor was proposed as a descriptive parameter, circumventing the limitations of overall rate-constants and allowing a comparison between kinetic data of drugs obtained under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Koheler, in Drug-Induced Diseases: Prevention, detection and management, ed. J. E. Tisdale and D. A. Miller, Hearthside Publishing, Bethesda, 2010, pp.117–134.

  2. E. Bjertness, Solar Radiation and Human Health, The Norwegian Academy of Science and Letters, Oslo, 2008, pp.102–113.

    Google Scholar 

  3. J. Ferguson, Investigation of drug-induced photosensitivity in man, Toxicology, 2006, 226, 25–26.

    Article  Google Scholar 

  4. J. Ferguson, Photodermatology, in Photodermatology, ed. J. Ferguson and J. S. Dover, Manon Publishing Ltd, London, 2006.

    Chapter  Google Scholar 

  5. J. T. Piechocki and K. Thoma, Pharmaceutical Photostability and Photostabilisation Technology, Informa Healthcare, London, 2010.

    Google Scholar 

  6. H. H. Tonnesen, Photostability of Drugs and Drug Formulations, CRC Press, London, 2nd edn,2004.

    Book  Google Scholar 

  7. ICH, Guidance for industry Q1B photostability testing of new drug substances and products, Fed. Regist., 1996, 62, 27115–27112.

    Google Scholar 

  8. M. Maafi and R. G. Brown, The kinetic model for AB(1Φ) systems: A closed-form integration of the differential equation with a variable photokinetic factor, J. Photochem. Photobiol., A, 2007, 187, 319–324.

    Article  CAS  Google Scholar 

  9. M. Maafi and R. Brown, Kinetic analysis and kinetic elucidation options for AB(1k,2Φ) systems. New Spectrokinetic methods for photochromes, Photochem. Photobiol. Sci., 2008, 7, 1360–1372.

    Article  CAS  PubMed  Google Scholar 

  10. W. Maafi and M. Maafi, Modelling Nifedipine Photodegradation, Photostability and Actinometric Properties, Int. J. Pharm., 2013, 456, 153–164.

    Article  CAS  PubMed  Google Scholar 

  11. M. Maafi and W. Maafi, Φ-order kinetics of photoreversible drug reactions, Int. J. Pharm., 2014, 471, 536–543.

    Article  CAS  PubMed  Google Scholar 

  12. M. Maafi and W. Maafi, Montelukast photodegradation: Elucidation of Φ-order kinetics, determination of quantum yields and application to actinometry, Int. J. Pharm., 2014, 471, 544–552.

    Article  CAS  PubMed  Google Scholar 

  13. N. Fukui, Y. Suzuki, T. Sugai, J. Watanabe, S. Ono, N. Tsuneyama and T. Someya, Promoter variation in the catechol-O-methyltransferase gene is associated with remission of symptoms during fluvoxamine treatment for major depression, Psychiatry Res., 2014, 218, 353–355.

    Article  CAS  PubMed  Google Scholar 

  14. D. P. Figgitt and K. J. McClellan, Fluvoxamine: An updated review of its use in the management of adults with anxiety disorders, Drugs, 2000, 60, 925–954.

    Article  CAS  PubMed  Google Scholar 

  15. P. Benfield and A. Ward, Fluvoxamine: a review of its pharmacodynamics and pharmacokinetic properties, and therapeutic efficacy in depression illness, Drugs, 1986, 32, 313–334.

    Article  CAS  PubMed  Google Scholar 

  16. M. Honda, K. Uchida, M. Tanabe and H. Ono, Fluvoxamine, a selective serotonin reuptake inhibitor, exerts its antiallodynic effects on neuropathic pain in mice via 5-HT2A/2C receptors, Neuropharmacology, 2006, 51, 866–872.

    Article  CAS  PubMed  Google Scholar 

  17. A. Velasco, C. Alamo, J. Heras and A. Carvajal, Effects of fluoxetine hydrochloride and fluvoxamine maleate on different preparations of isolated guinea-pig and rat organ-tissues, Gen. Pharmacol., 1997, 28, 509–512.

    Article  CAS  PubMed  Google Scholar 

  18. D. Muck-Seler, N. Pivac and M. Diksic, Acute treatment with fluvoxamine elevates rat brain serotonin synthesis in some terminal regions: an autoradiographic study, Nucl. Med. Biol., 2012, 39, 1053–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. A. Panahia, Y. T. E. Monirib and E. Keshmirizadeh, Synthesis and characterization of poly[N-isopropylacrylamide-co-1-(N,N-bis-carboxymethyl)amino-3-allylglycerol] grafted to magnetic nano-particles for the extraction and determination of fluvoxamine in biological and pharmaceutical samples, J. Chromatogr., A, 2014, 1345, 37–42.

    Article  CAS  Google Scholar 

  20. G. Miolo, S. Caffieri, L. Levorato, M. Imbesi, P. Giusti, T. Uz, R. Manev and H. Manev, Photoisomerization of fluvoxamine generates an isomer that has reduced activity on the 5-hydroxytryptamine transporter and does not affect cell proliferation, Eur. J. Pharmacol., 2002, 450, 223–229.

    Article  CAS  PubMed  Google Scholar 

  21. J. W. Kwon and K. L. Armbrust, Photo-isomerization of fluvoxamine in aqueous solutions, J. Pharm. Biomed. Anal., 2005, 37, 643–648.

    Article  CAS  PubMed  Google Scholar 

  22. K. Iijima, M. Suzuki, T. Sakaizumi and O. Ohashi, Molecular structure of gaseous acetoxime determined by electron diffraction, J. Mol. Struct., 1997, 413–414, 327–331.

    Article  Google Scholar 

  23. M. Black and K. Armbrust, Final Report: The Environmental Occurrence, Fate, and Ecotoxicity of Selective Serotonin Reuptake Inhibitors (SSRIs) in Aquatic Environments, 2007. Available at: http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/1755/report/F., accessed on 3 January 2015.

    Google Scholar 

  24. M. Maafi, The potential of AB(1Φ) systems for direct actinometry. Diarylethenes as successful actinometers for the visible range, Phys. Chem. Chem. Phys., 2010, 12, 13248–13254.

    Article  CAS  PubMed  Google Scholar 

  25. M. Maafi and R. Brown, General analytical solutions for the kinetics of AB(k,Φ) and ABC(k,Φ) systems, Int. J. Chem. Kinet., 2005, 37, 162–174.

    Article  CAS  Google Scholar 

  26. M. Maafi and R. Brown, Analysis of diarylnaphthopyran kinetics. Degeneracy of the kinetic solution, Int. J. Chem. Kinet., 2005, 37, 717–727.

    Article  CAS  Google Scholar 

  27. A. Gilbert and J. Bagott, Essentials of molecular photochemistry, Blackwell Science, Oxford, 1991.

    Google Scholar 

  28. D. C. Neckers, D. H. Volman and G. Von Bunau, Advances in photochemistry, John Wiley & Sons, New York, 1995, vol.19.

  29. J. Singh, Photochemistry and pericyclic reactions, New Age International, New Delhi, 2005.

    Google Scholar 

  30. Z. Kutlubay, A. Sevim, B. Engin and Y. Tuzun, Photodermatoses, including phototoxic and photoallergic reactions (internal and external), Clin. Dermatol., 2004, 32, 73–79.

    Article  Google Scholar 

  31. A. Arnold, C. Pedroza and E. Tyson, Phototherapy in ELBW newborns: Does it work? Is it safe? The evidence from randomized clinical trials, Semin. Perinatol., 2014, 38, 452–464.

    Article  PubMed  Google Scholar 

  32. L. Feldmeyer, G. Shojaati, K. S. Spanaus, A. Navarini, B. Theler, D. Donghi, M. Urosevic-Maiwald, M. Glatz, L. Imhof, M. J. Barysch, R. Dummer, M. Roos, L. E. French, C. Surber and G. F. L. Hofbauer, Phototherapy with UVB narrowband, UVA/UVBnb, and UVA1 differentially impacts serum 25-hydroxyvitamin-D3, J. Am. Acad. Dermatol., 2013, 69, 530–536.

    Article  CAS  PubMed  Google Scholar 

  33. A. M. Drucker and A. M. C. F. Rosen, Drug-induced photosensitivity: culprit drugs, management and prevention, Drug Saf., 2011, 34, 821–837.

    Article  CAS  PubMed  Google Scholar 

  34. ICH(S10), ICH Harmonised Tripartite Guideline Photosafety Evaluation of Pharmaceuticals S10, 2013. Available at: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S10/S10_Step_4.pdf., accessed on 3 January 2015.

    Google Scholar 

  35. FDA Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry: Photosafety Testing, 2003. Available at: http://www.fda.gov/cder/guidance/index.htm., accessed on 3 January 2015.

    Google Scholar 

  36. The European Agency for the Evaluation of Medicinal Products (EMEA). Committee for Proprietary Medicinal Products (CPMP). Note for guidance on photosafety testing, 2002. CPMP/SWP/398/01. Available at: http://www.emea.eu.int/., accessed on 3 January 2015.

    Google Scholar 

  37. C. Krul, W. Maas, R. Van Meeuwen, N. De Vogel and M. J. Steenwinkel, In vivo photogenotoxicity testing, bridging the gap between in vitro photogenotoxicity and photocarcinogenicity testing, Toxicology, 2006, 226, 1–25.

    Article  Google Scholar 

  38. H. Cameron, S. Yule, R. S. Dawe, H. Ibbotson, H. Moseley and J. Ferguson, Review of an established UK home phototherapy service 1998–2011: improving access to a cost-effective treatment for chronic skin disease, Public Health, 2014, 128, 317–324.

    Article  CAS  PubMed  Google Scholar 

  39. T. Gambichler, S. Terras and A. Kreuter, Treatment regimens, protocols, dosage, and indications for UVA1 phototherapy: facts and controversies, Clin. Dermatol., 2013, 31, 438–454.

    Article  PubMed  Google Scholar 

  40. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical actinometry (IUPAC Technical Report), Pure Appl. Chem., 2004, 76, 2105–2146.

    Article  CAS  Google Scholar 

  41. M. Montali, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of photochemistry, CRC Press–Taylor & Francis, Boca Raton-London-New York, 3rd edn,2006.

    Book  Google Scholar 

  42. S. W. Baertschi, Commentary on the quinine actinometry system described in the ICH draft guideline on photostability testing of new drug substances and products, Drug Stab., 1997, 1, 193–195.

    CAS  Google Scholar 

  43. S. W. Baertschi, K. M. Alsante and H. H. Tonnesen, A critical assessment of the ICH guideline on photostability testing of new drug substances and products (Q1B): recommendation for revision, J. Pharm. Sci., 2010, 99, 2934–2940.

    Article  CAS  PubMed  Google Scholar 

  44. C. A. De Azevedo Filho, D. De Filgueiras Gomes, J. P. De Melo Guedes, R. M. F. Batista and B. S. Santos, Considerations on the quinine actinometry calibration method used in photostability testing of pharmaceuticals, J. Pharm. Biomed. Anal., 2011, 54, 886–888.

    Article  PubMed  CAS  Google Scholar 

  45. B. M. Wohl and J. F. J. Engebersen, Responsive layer-by-layer materials for drug delivery, J. Controlled Release, 2012, 158, 2–14.

    Article  CAS  Google Scholar 

  46. I. Tomatsu, K. Peng and A. Kros, Photoresponsive hydrogels for biomedical applications, Adv. Drug Delivery Rev., 2011, 63, 1257–1266.

    Article  CAS  Google Scholar 

  47. N. Fomina, J. Sankaranarayanan and A. Almutairi, Photochemical mechanisms of light-triggered release from nanocarriers, Adv. Drug Delivery Rev., 2012, 64, 1005–1020.

    Article  CAS  Google Scholar 

  48. M. Feliciano, D. Vylta, K. A. Medeiros and J. J. Chambers, The GABAA receptor as a target for photochromic molecules, Bioorg. Med. Chem., 2010, 18, 7731–7738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Maafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maafi, M., Maafi, W. Quantitative assessment of photostability and photostabilisation of Fluvoxamine and its design for actinometry. Photochem Photobiol Sci 14, 982–994 (2015). https://doi.org/10.1039/c5pp00022j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00022j

Navigation