Skip to main content
Log in

A modeling approach to determine how much UV radiation is available across the UK and Ireland for health risk and benefit studies

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A detailed map of the available UV across the UK from 2003 to 2012 is provided. A suite of data derived from climatologies and satellite observations are used to calculate spectral UV irradiance and related weighted doses (erythema, DNA damage, vitamin D). The result is a well-validated tool that has two advantages: (i) the output is simulated spectral UV irradiance that can be weighted with any action spectrum for use in any research studies that require ambient UV data, (ii) reliance on instruments with planned operational lives of at least several years that ensures data and method homogeneity for extension to future studies. The model-derived doses are satisfactory validated against spectral ground-based measurements at two sites. According to the calculated climatology, the southern part of the UK receives 1.5–2 times more UV than the north during spring, summer and autumn. During wintertime, the UV doses in the far north are an order of magnitude lower than southern values. Even for the same latitude, regional variations of cloudiness result in doses at coastal sites being up to 25% higher than inland areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. R. Herman, N. Krotkov, E. Celarier, D. Larko and G. Labow, Distribution of UV radiation at the Earth’s surface from TOMS-measured UV-backscattered radiances, J. Geophys. Res., 1999, 104, 12059–12076.

    Article  CAS  Google Scholar 

  2. S. Kalliskota, J. Kaurola, P. Taalas, J. R. Herman, E. A. Celalier and N. A. Krotkov, Comparison of daily UV doses estimated from Nimbus7/TOMS measurements and ground-based spectroradiometric data, J. Geophys. Res., 2000, 105, (D4) 5059–5067.

    Article  CAS  Google Scholar 

  3. J. Verdebout, A method to generate surface UV radiation maps over Europe using GOME, Meteosat, and ancillary geophysical data, J. Geophys. Res., 2000, 105, (D4) 5049–5058.

    Article  CAS  Google Scholar 

  4. J. Verdebout, A European satellite-derived UV climatology available for impact studies, Radiat. Prot. Dosim., 2004, 111, (4) 407–411.

    Article  CAS  Google Scholar 

  5. V. E. Fioletov, M. G. Kimlin, N. Krotkov, L. J. B. McArthur, J. B. Kerr, D. I. Wardle, J. R. Herman, R. Meltzer, T. W. Mathews and J. Kaurola, UV index climatology over the United States and Canada from ground-based and satellite estimates, J. Geophys. Res., 2004, 109, D22308, DOI: 10.1029/2004JD004820.

    Google Scholar 

  6. E. Luccini, A. Cede, R. Piacentini, C. Villanueva and P. Canziani, Ultraviolet climatology over Argentina, J. Geophys. Res., 2006, 111, D17312, DOI: 10.1029/2005JD006580.

    Article  Google Scholar 

  7. A. Kazantzidis, A. F. Bais, J. Grobner, J. R. Herman, S. Kazadzis, N. Krotkov, E. Kyro, P. N. den Outer, K. Garane, P. Gorts, K. Lakkala, C. Meleti, H. Slaper, R. B. Tax, T. Turunen and C. S. Zerefos, Comparison of satellite-derived UV irradiances with ground-based measurements at four European stations, J. Geophys. Res., 2006, 111, D13207, DOI: 10.1029/2005JD006672.

    Article  Google Scholar 

  8. A. Tanskanen, A. Lindfors, A. Määtä, N. Ktotkov, J. Herman, J. Kaurola, T. Koskela, K. Lakkala, V. Fioletov, G. Bernhard, R. McKenzie, Y. Kondo, M. O’Neil, H. Slaper, P. den Outer, A. F. Bais and J. Tamminen, Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data, J. Geophys. Res., 2007, 112, D24S44, DOI: 10.1029/2007JD008830.

    Google Scholar 

  9. H. Gadhavi, R. T. Pinker and I. Laszlo, Estimates of surface ultraviolet radiation over north America using Geostationary Operational Environmental Satellites observations, J. Geophys. Res., 2008, 113, DOI: 10.1029/2007JD009308.

  10. A. Lindfors, A. Tanskanen, A. Arola, R. van Der A, A. Bais, U. Feister, M. Janouch, W. Josefsson, T. Koskela, K. Laikala, P. N. den Outer, A. R. D. Smedley, H. Slaper and A. R. Webb, The PROMOTE UV Record: Toward a Global Satellite-Based Climatology of Surface Ultraviolet Irradiance, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2009, 2, (3) 207–212.

    Article  Google Scholar 

  11. H. F. DeLuca, Overview of general physiologic features and functions of vitamin D, Am. J. Clin. Nutr., 2004, 80, 1689–196S.

  12. D. Feldman, A. V. Krishnan, S. Swami, E. Giovannucci and B. J. Feldman, The role of vitamin D in reducing cancer risk and progression, Nat. Rev. Cancer, 2014, 14, 342–357.

    Article  CAS  Google Scholar 

  13. L. E. Rhodes, A. R. Webb, H. I. Fraser, R. Kift, M. T. Durkin, D. Allan, S. J. O’Brien, A. Vail and J. L. Berry, Recommended Summer Sunlight Exposure Levels Can Produce Sufficient (=20 ng/mL) but Not the Proposed Optimal (=32 ng/mL) 25(OH)D Levels at UK Latitudes, J. Invest. Dermatol., 2010, 130, 1411–1418.

    Article  CAS  Google Scholar 

  14. A. R. Webb, R. Kift, M. T. Durkin, S. J. O’Brien, A. Vail, J. L. Berry and L. E. Rhodes, The role of sunlight exposure in determining the vitamin D status of the UK white Caucasian adult population, Br. J. Dermatol., 2010, 163, 1050–1055.

    Article  CAS  Google Scholar 

  15. R. Kift, J. L. Berry, A. Vail, M. T. Durkin, L. E. Rhodes and A. R. Webb, Lifestyle factors including less cutaneous sun exposure contribute to starkly lower vitamin D status in UK South Asians compared to the white Caucasian population, Br. J. Dermatol., 2013, 169, 1272–1278.

    Article  CAS  Google Scholar 

  16. M. D. Farrar, R. Kift, S. J. Cooper, A. R. Webb, M. T. Durkin, D. Allan, A. Vail, J. L. Berry and L. E. Rhodes, Recommended summer sunlight exposure levels fail to produce sufficient Vitamin D status in UK adults of South Asian origin, Am. J. Clin. Nutr., 2011, 94, 1219–1224.

    Article  CAS  Google Scholar 

  17. M. D. Farrar, A. R. Webb, R. Kift, M. Durkin, D. Allan, A. Herbert, J. L. Berry and L. E. Rhodes, Targeted sun exposure guidance for South Asians living at northerly latitudes could assist avoidance of vitamin D deficient status, J. Invest. Dermatol., 2013, 133, S160.

    Google Scholar 

  18. A. R. Webb, R. Kift, J. L. Berry and L. E. Rhodes, Vitamin D Debate: Translating Controlled Experiments into Reality for Human Exposure Times, Photochem. Photobiol., 2011, 87, 741–745.

    Article  CAS  Google Scholar 

  19. A. R. D. Smedley, J. S. Rimmer, D. Moore, R. Toumi and A. R. Webb, Total ozone and surface UV trends in the United Kingdom: 1979–2008, Int. J. Climatol., 2010 DOI: 10.1002/joc.2275.

    Google Scholar 

  20. H. Slaper, M. Blumthaler, M. Huber and F. Kuik, Comparing ground-level spectrally resolved solar UV measurements using various instruments: A technique resolving effects of wavelength shift and slit width, Geophys. Res. Lett., 1995, 22, (20) 2721–2724.

    Article  Google Scholar 

  21. A. W. Brewer, A replacement for the Dobson spectrophotometer?, Pure Appl. Geophys., 1973, 106–108, (1) 919–927. DOI: 10.1007/BF00881042.

    Article  Google Scholar 

  22. V. E. Fioletov, J. B. Kerr, C. T. McElroy, D. I. Wardle, V. Savastiouk and T. S. Grajnar, The Brewer reference triad, Geophys. Res. Lett., 2005, 32, (20) L20805, DOI: 10.1029/2005GL024244.

    Article  Google Scholar 

  23. V. Savastiouk and C. McElroy, Brewer Spectrophotometer Total Ozone Measurements Made during the 1998 Middle Atmosphere Nitrogen Trend Assessment (MANTRA) Campaign, Atmos.–Ocean, 2005, 43, (4) 315–324. DOI: 10.3137/ao.430403.

    Article  Google Scholar 

  24. V. E. Fioletov, J. B. Kerr, E. W. Hare, G. J. Labow and R. D. McPeters, An assessment of the world ground-based total ozone network performance from the comparison with satellite data, J. Geophys. Res., 1999, 104, (D1) 1737–1747. DOI: 10.1029/1998JD100046.

    Article  CAS  Google Scholar 

  25. CIE (International Commission on Illumination). Action spectrum for the production of previtamin D3 in human skin, 2006, 174.

    Google Scholar 

  26. CIE (Commission Internationale de l’Eclairage), Erythema Reference Action Spectrum and Standard Erythema Dose, Joint ISO/CIE Standard, 1999, ISO 17166:1999/CIE S007–1998.

  27. R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, (9) 3363–3366.

    Article  CAS  Google Scholar 

  28. B. Mayer and A. Kylling, Technical note: The libRadtran software package for radiative transfer calculations–description and examples of use, Atmos. Chem. Phys., 2005, 5, 1855–1877.

    Article  CAS  Google Scholar 

  29. R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote and Y. J. Kaufman, Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance, J. Geophys. Res., 2007, 112, D13211:20.

    Google Scholar 

  30. R. C. Levy, L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn and T. F. Eck, Global evaluation of the collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 2010, 10, 10399–10420.

    Article  CAS  Google Scholar 

  31. G. Anderson, S. Clough, F. Kneizys, J. Chetwynd and E. Shettle., AFGL atmospheric constituent profiles (0–120 km), Tech. Rep. AFGL-TR-86-0110, 1986, Air Force Geophys. Lab., Hanscom AirForce Base, Bedford, Mass.

  32. J. R. Herman and E. A. Celarier, Earth surface reflectivity climatology at 340 nm to 380 nm from TOMS data, J. Geophys. Res., 1997, 102, 28003–28011.

    Article  Google Scholar 

  33. S. Kazadzis, A. F. Bais, D. Balis, N. Kouremeti, M. M. Zempila, A. Arola, E. Giannakaki, V. Amiridis and A. Kazantzidis, Spatial and temporal UV irradiance and aerosol variability within the area of an OMI satellite pixel, Atmos. Chem. Phys., 2009, 9, 4593–4601.

    Article  CAS  Google Scholar 

  34. R. Carrasco-Hernandez, A. R. D. Smedley and A. R. Webb, Using urban canyon geometries obtained from Google Street View for atmospheric studies: Potential applications in the calculation of street level total shortwave irradiances, Energy and Buildings, 2015, 86, 340–348. DOI: 10.1016/j.enbuild.2014.10.001.

    Article  Google Scholar 

  35. M. S. Stengel, A. K. Kniffka, J. F. M. Meirink, M. L. Lockhoff, J. T. Tan and R. H. Hollmann, CLAAS: the CM SAF cloud property data set using SEVIRI, Atmos. Chem. Phys., 2014, 14, 4297–4311.

    Article  Google Scholar 

  36. Z. Litynska, H. De Backer, P. Koepke, A. W. Schmalwieser, J. Gröbner, COST 726: Long term changes and climatology of UV radiation over Europe, Geophys. Res. Abstr., 2007, 9, 08151, SRef-ID: 1607-7962/gra/EGU2007-A-08151.

    Google Scholar 

  37. P. N. den Outer, H. Slaper, J. Kaurola, A. Lindfors, A. Kazantzidis, A. F. Bais, U. Feister, J. Junk, M. Janouch and W. Josefsson, Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades, J. Geophys. Res., 2010, 115, D10102, DOI: 10.1029/2009JD012827.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kazantzidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazantzidis, A., Smedley, A., Kift, R. et al. A modeling approach to determine how much UV radiation is available across the UK and Ireland for health risk and benefit studies. Photochem Photobiol Sci 14, 1073–1081 (2015). https://doi.org/10.1039/c5pp00008d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00008d

Navigation