Skip to main content
Log in

Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Here we investigated absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in 15 alpine lakes located below or above the tree line to determine its source and composition. The results indicate that the concentrations of CDOM in below-tree-line lakes are significantly higher than in above-tree-line lakes, as evidenced from the absorption coefficients of a250 and a365. The intensities of the protein-like and humic-like fluorescence in below-tree-line lakes are higher than in above-tree-line lakes as well. Three fluorescent components were identified using parallel factor analysis (PARAFAC) modelling. Component 1 is probably associated with biological degradation of terrestrial humic component. The terrestrial humic-like component 2 is only found in below-tree-line lakes. The protein-like or phenolic component 3 is dominant in above-tree-line lakes, which is probably more derived from autochthonous origin. In this study, (1) higher a250/a365 and S275–295 values indicate smaller molecular weights of CDOM in above-tree-line lakes than in below-tree-line lakes, and smaller molecular weights at the surface than at 2.0 m depth; (2) SUVA254 and FI255 results provide evidence of lower percent aromaticity of CDOM in above-tree-line lakes; and (3) FI310 and FI370 suggest a strong allochthonous origin at the surface in below-tree-line lakes, and more contribution from autochthonous biological and aquatic bacterial origin in above-tree-line lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rogora, R. Mosello and S. Arisci, The effect of climate warming on the hydrochemistry of Alpine lakes, Water, Air, Soil Pollut., 2003, 148, 347–361.

    Article  CAS  Google Scholar 

  2. I. Laurion, M. Ventura, J. Catalan, R. Psenner and R. Sommaruga, Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within- lake variability, Limnol. Oceanogr., 2000, 45, 1274–1288.

    Article  Google Scholar 

  3. R. Sommaruga, Preferential accumulation of carotenoids rather than of mycosporine-like amino acids in copepods from high altitude Himalayan lakes, Hydrobiologia, 2010, 648, 143–156.

    Article  CAS  Google Scholar 

  4. P. R. Leavitt, B. F. Cumming, J. P. Smol, M. Reasoner, R. Pienitz and D. Hodgson, Climatic control of ultraviolet radiation effects on lakes, Limnol. Oceanogr., 2003, 48, 2062–2069.

    Article  Google Scholar 

  5. M. Rogora, R. Mosello and S. Arisci, The effect of climate warming on the hydrochemistry of Alpine lakes, Water, Air, Soil Pollut., 2003, 148, 347–361.

    Article  CAS  Google Scholar 

  6. C. E. Williamson, D. P. Morris, M. L. Pace and O. G. Olson, Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm, Limnol. Oceanogr., 1999, 44, 795–803.

    Article  CAS  Google Scholar 

  7. B. Allard, H. Borén and C. Pettersson, Degradation of humic substances by UV radiation, Environ. Int., 1994, 20, 97–101.

    Article  CAS  Google Scholar 

  8. Y. L. Zhang, M. L. Liu, B. Q. Qin and S. Feng, Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation, Hydrobiologia, 2009, 627, 159–168.

    Article  CAS  Google Scholar 

  9. D. P. Morris and B. R. Hargreaves, The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau, Limnol. Oceanogr., 1997, 42, 239–249.

    Article  CAS  Google Scholar 

  10. A. V. Vähätalo and R. G. Wetzel, Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures, Mar. Chem., 2004, 89, 313–326.

    Article  CAS  Google Scholar 

  11. R. Sommaruga, The role of solar UV radiation in the ecology of alpine lakes, J. Photochem. Photobiol., B, 2001, 62, 35–42.

    Article  CAS  Google Scholar 

  12. R. D. Vinebrooke and P. R. Leavitt, Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients, and ultraviolet radiation on an alpine littoral food web, Limnol. Oceanogr., 1998, 43, 1065–1081.

    Article  CAS  Google Scholar 

  13. E. De Laurentiis, M. Minella, V. Maurino, C. Minero, M. Brigante, G. Mailhot and D. Vione, Photochemical production of organic matter triplet states in water samples from mountain lakes, located below or above the tree line, Chemosphere, 2012, 88, 1208–1213.

    Article  PubMed  CAS  Google Scholar 

  14. R. K. Henderson, A. Baker, S. A. Parsons and B. Jefferson, Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms, Water Res., 2008, 42, 3435–3445.

    Article  CAS  PubMed  Google Scholar 

  15. K. R. Murphy, C. A. Stedmon, T. D. Waite and G. M. Ruiz, Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy, Mar. Chem., 2008, 108, 40–58.

    Article  CAS  Google Scholar 

  16. E. S. Kritzberg, J. J. Cole, M. L. Pace, W. Granéli and D. L. Bade, Autochthonous versus allochthonous carbon sources of bacteria: Results from whole-lake13C addition experiments, Limnol. Oceanogr., 2004, 49, 588–596.

    Article  CAS  Google Scholar 

  17. C. A. Stedmon, S. Markager and H. Kaas, Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters, Estuarine, Coastal Shelf Sci., 2000, 51, 267–278.

    Article  CAS  Google Scholar 

  18. Y. L. Zhang, E. L. Zhang, Y. Yin, M. A. van Dijk, L. Q. Feng, Z. Q. Shi, M. L. Liu and B. Q. Qin, Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude, Limnol. Oceanogr., 2010, 55, 2645–2659.

    Article  CAS  Google Scholar 

  19. M. S. Twardowski, E. Boss, J. M. Sullivan and P. L. Donaghay, Modeling the spectral shape of absorbing chromophoric dissolved organic matter, Mar. Chem., 2004, 89, 69–88.

    Article  CAS  Google Scholar 

  20. D. H. Haan, Solar UV-light penetration and photodegradation of humic substances in peaty lake water, Limnol. Oceanogr., 1993, 38, 1072–1076.

    Article  Google Scholar 

  21. J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fugii and K. Mopper, Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ, Environ. Sci. Technol., 2003, 37, 4702–4708.

    Article  CAS  PubMed  Google Scholar 

  22. W. Nishijima and G. E. Speitel Jr., Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon, Chemosphere, 2004, 56, 113–119.

    Article  CAS  PubMed  Google Scholar 

  23. F. C. Wu, R. B. Mills, Y. R. Cai, R. D. Evans and P. J. Dillon, Photodegradation-induced changes in dissolved organic matter in acidic waters, Can. J. Fish. Aquat. Sci., 2005, 62, 1019–1027.

    Article  CAS  Google Scholar 

  24. X. C. Wang, L. Litz, R. F. Chen, W. Huang, P. Feng and M. A. Altabet, Release of dissolved organic matter during oxic and anoxic decomposition of salt marsh cordgrass, Mar. Chem., 2007, 105, 309–321.

    Article  CAS  Google Scholar 

  25. W. Chen, P. Westerhoff, J. A. Leenheer and K. Booksh, Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter, Environ. Sci. Technol., 2003, 37, 5701–5710.

    Article  CAS  PubMed  Google Scholar 

  26. R. M. Cory and D. M. McKnight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter, Environ. Sci. Technol., 2005, 39, 8142–8149.

    Article  CAS  PubMed  Google Scholar 

  27. H. F. Wilson and M. A. Xenopoulos, Effects of agricultural land use on the composition fluvial dissolved organic matter, Nat. Geosci., 2008, 2, 37–41.

    Article  CAS  Google Scholar 

  28. L. Bracchini, A. M. Dattilo, V. Hull, S. A. Loiselle, L. Nannicini, M. P. Picchi, M. Ricci, C. Santinelli, A. Seritti, A. Tognazzi and C. Rossi, Spatial and seasonal changes in optical properties of authonous and allochthonous chromophoric dissolved organic matter in a stratified mountain lake, Photochem. Photobiol. Sci., 2010, 9, 304–314.

    Article  CAS  PubMed  Google Scholar 

  29. A. Bricaud, A. Morel and L. Prieur, Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain, Limnol. Oceanogr., 1981, 26, 43–53.

    Article  CAS  Google Scholar 

  30. S. A. Green and N. V. Blough, Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters, Limnol. Oceanogr., 1994, 39, 1903–l916.

    Article  CAS  Google Scholar 

  31. J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber and K. Mopper, Limnol. Oceanogr., 2008, 53, 955–969.

    Article  Google Scholar 

  32. S. Wada, M. N. Aoki, Y. Tsuchiya, T. Sato, H. Shinagawa and T. Hama, Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, J. Exp. Mar. Biol. Ecol., 2007, 349, 344–358.

    Article  CAS  Google Scholar 

  33. A. Vodacek, N. V. Bloughl, M. D. De Grandpre, E. T. Peltzer and R. K. Nelson, Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation, Limnol. Oceanogr., 1997, 42, 674–686.

    Article  CAS  Google Scholar 

  34. S. Vignudelli, C. Santinelli, E. Murru, L. Nannicini and A. Seritti, Distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) in coastal waters of the northern Tyrrhenian Sea (Italy), Estuarine, Coastal Shelf Sci., 2004, 60, 133–149.

    Article  CAS  Google Scholar 

  35. R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard and P. L. Miller, Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra, Limnol. Oceanogr. Methods, 2010, 8, 67–78.

    CAS  Google Scholar 

  36. T. Ohno, Fluorescence inner-filtering correction for determing the humification index of dissolved organic matter, Environ. Sci. Technol., 2002, 36, 742–746.

    Article  CAS  PubMed  Google Scholar 

  37. C. A. Stedmon, S. Markager and R. Bro, Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 2003, 82, 239–254.

    Article  CAS  Google Scholar 

  38. K. R. Murphy, G. M. Ruiz and W. T. M. Dunsmuir, Optimized parameters for fluorescence-based verification of ballast water exchange by ships, Environ. Sci. Technol., 2006, 40, 2357–2362.

    Article  CAS  PubMed  Google Scholar 

  39. C. A. Stedmon and S. Markager, Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis, Limnol. Oceanogr., 2005, 50, 1415–1426.

    Article  CAS  Google Scholar 

  40. C. A. Stedmon and R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial, Limnol. Oceanogr.: Methods, 2008, 6, 1–6.

    Article  Google Scholar 

  41. A. Zsolnay, E. Baigar, M. Jimenez, B. Steinweg and F. Saccomandi, Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying, Chemosphere, 1999, 38, 45–50.

    Article  CAS  PubMed  Google Scholar 

  42. E. Parlanti, K. Worz, L. Geoffroy and M. Lamotte, Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Org. Geochem., 2000, 31, 1765–1781.

    Article  CAS  Google Scholar 

  43. T. Ohno, Fluorescence inner-filtering correction for determing the humification index of dissolved organic matter, Environ. Sci. Technol., 2002, 36, 742–746.

    Article  CAS  PubMed  Google Scholar 

  44. N. Mladenov, D. M. McKnight, S. A. Macko, M. Norris, R. M. Cory and L. Ramberg, Chemical characterization of DOM in channels of a seasonal wetland, Aquat. Sci. Res. Across Bound., 2007, 69, 456–471.

    Article  CAS  Google Scholar 

  45. Y. W. Chen and X. Y. Gao, Comparison of two methods for phytoplankton chlorophyll-a concentration measurement, J. Lake Sci., 2000, 12, 185–188. (in Chinese with English abstract).

    Article  Google Scholar 

  46. Q. H. Cai, J. K. Liu and L. King, A comprehensive model for assessing lake eutrophication, Chin. J. Appl. Ecol., 2002, 13, 1674–1678.

    CAS  Google Scholar 

  47. Z. Q. Chen, Y. Li and J. M. Pan, Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary China, Cont. Shelf Res., 2004, 24, 1845–1856.

    Article  Google Scholar 

  48. D. J. Repetad, N. T. Hartman, S. John, A. D. Jones and R. Goericke, Structure elucidation and characterization of polychlorinated biphenyl carboxylic acids as major constituents of chromophoric dissolved organic matter in seawater, Environ. Sci. Technol., 2004, 38, 5373–5378.

    Article  CAS  Google Scholar 

  49. K. Khamis, D. M. Hannah, L. E. Brown, R. Tiberti and A. M. Milner, The use of invertebrates as indicators of environmental change in alpine rivers and lakes, Sci. Total Environ., 2014, 493, 1242–1254.

    Article  CAS  PubMed  Google Scholar 

  50. E. Hood, J. Fellman, R. G. M. Spencer, P. J. Hernes, R. Edwards, D. D’Amore and D. Scott, Glaciers as a source of ancient and labile organic matter to the marine environment, Nature, 2009, 462, 1044–1047.

    Article  CAS  PubMed  Google Scholar 

  51. R. J. Kieber, J. D. Willey, R. F. Whitehead and S. N. Reid, Photobleaching of chromophoric dissolved organic matter (CDOM) in rainwater, J. Atmos. Chem., 2007, 58, 219–235.

    Article  CAS  Google Scholar 

  52. R. E. Warnock, W. W. C. Gieskes and S. van Laar, Regional and seasonal differences in light absorption by yellow substance in the Southern Bight of the North Sea, J. Sea Res., 1999, 42, 169–178.

    Article  Google Scholar 

  53. C. S. Yentsch and C. A. Reichart, The interrelationship between water-soluable yellow substances and chloroplastic pigments in marine algae, Bot. Mar., 1962, 3, 65–74.

    CAS  Google Scholar 

  54. J. Lawrence, Semi-quantitative determination of fulvic acid, tannin and lignin in natural waters, Water Res., 1980, 14, 373–377.

    Article  CAS  Google Scholar 

  55. K. Mopper and C. A. Schultz, Fluorescence as a possible tool for studying the nature and water column distribution of DOC component, Mar. Chem., 1993, 41, 229–238.

    Article  CAS  Google Scholar 

  56. S. Determann, J. Lobbes, R. Reuter and J. Rullkötter, Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria, Mar. Chem., 1998, 62, 137–156.

    Article  CAS  Google Scholar 

  57. M. P. Lesser, Elevated temperature and ultraviolet radiation cause oxidative stress and inhibit photosynthesis symbiotic dinoflagellates, Limnol. Oceanogr., 1996, 41, 271–283.

    Article  CAS  Google Scholar 

  58. D. W. O’Sullivan, P. J. Neale, R. B. Coffin, T. J. Boyd and C. L. Osburn, Photochemical production of hydrogen peroxide and methylhydroperoxide in coastal waters, Mar. Chem., 2005, 97, 14–33.

    Article  CAS  Google Scholar 

  59. P. Kowalczuk, J. Stoń-Egiert, W. J. Cooper, R. F. Whitehead and M. J. Durako, Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy, Mar. Chem., 2005, 96, 273–292.

    Article  CAS  Google Scholar 

  60. E. J. Rochelle-Newall and T. R. Fisher, Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton, Mar. Chem., 2002, 77, 7–21.

    Article  CAS  Google Scholar 

  61. A. Stubbins, E. Hood, P. A. Raymond, G. R. Aiken, R. L. Sleighter, P. J. Hernes, D. Butman, P. G. Hatcher, R. G. Striegl, P. Schuster, H. A. N. Abdulla, A. W. Vermilyea, D. T. Scott and R. G. M. Spencer, Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers, Nat. Geosci., 2012, 5, 198–201.

    Article  CAS  Google Scholar 

  62. H. Doi, Spatial patterns of autochthonous and allochthonous resources in aquatic food webs, Popul. Ecol., 2009, 51, 57–64.

    Article  Google Scholar 

  63. L. J. Tranvik, Microbial transformations of labile dissolved organic matter into humic-like matter in seawater, FEMS Microbiol. Ecol., 1993, 12, 177–183.

    Article  CAS  Google Scholar 

  64. D. M. Mcknight, E. D. Andrews, S. A. Spaulding and G. R. Aiken, Aquatic fulvic acids in algal-rich Antarctic ponds, Limnol. Oceanogr., 1994, 39, 1972–1979.

    Article  Google Scholar 

  65. Y. Hanamachi, T. Hama and T. Yanai, Decomposition process of organic matter derived from freshwater phytoplankton, Limnology, 2008, 9, 57–69.

    Article  CAS  Google Scholar 

  66. C. A. Stedmon and S. Markager, Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy, Limnol. Oceanogr., 2005, 50, 686–697.

    Article  CAS  Google Scholar 

  67. P. Zhu, H. Q. Liao, Z. L. Hua, F. Z. Xie, Z. Tang and L. Zhang, Parallel factor analysis as an analysis technique for the ratio of three-dimensional fluorescence peak in Taihu Lake, Spectrosc. Spect. Anal., 2012, 32, 152–156.

    CAS  Google Scholar 

  68. N. Maie, N. M. Scully, O. Pisani and R. Jaffé, Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems, Water Res., 2007, 41, 563–570.

    Article  CAS  PubMed  Google Scholar 

  69. P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar. Chem., 1996, 51, 325–346.

    Article  CAS  Google Scholar 

  70. P. G. Coble, C. E. Del Castillo and B. Avril, Distribution and optical properties of CDOM in the Arabian Sea during the 1995 southwest monsoon, Deep-Sea Res. Part II, 1998, 45, 2195–2223.

    Article  CAS  Google Scholar 

  71. M. P. Miller, D. M. McKnight, S. C. Chapra and M. W. Williams, A model of degradation and production of three pools of dissolved organic matter in an alpine lake, Limnol. Oceanogr., 2009, 54, 2213–2227.

    Article  Google Scholar 

  72. A. Huguet, L. Vacher, S. Relexans, S. Saubusse, J. M. Froidefond and E. Parlanti, Properties of fluorescent dissolved organic matter in the Gironde Estuary, Org. Geochem., 2009, 40, 706–719.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Su.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00478g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Chen, F. & Liu, Z. Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM. Photochem Photobiol Sci 14, 1047–1062 (2015). https://doi.org/10.1039/c4pp00478g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00478g

Navigation