Skip to main content
Log in

Tyrosine fluorescence probing of the surfactant-induced conformational changes of albumin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Tyrosine fluorescence in native proteins is known to be effectively quenched, whereas its emission increases upon proteins’ unfolding. This suggests that tyrosine fluorescence could be exploited for probing structural rearrangements of proteins in addition to the extensively used tryptophan emission. We studied the possibility of using tyrosine fluorescence as an indicator of surfactant-induced conformational changes in albumins. It was shown that fluorescence of tyrosine residues, which are uniformly distributed all over the protein molecules, allows the detection of subtle structural rearrangements of proteins upon surfactant binding, which do not influence the properties of a single tryptophan residue buried in the inner hydrophobic region of human serum albumin. Tyrosine fluorescence properties, including its fluorescence lifetime, revealed the multistage character of surfactant binding to albumin, consistent with the data provided by other methods. The obtained results demonstrate the possibility of probing conformational changes in proteins using tyrosine photophysical parameters as indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. T. Peters Jr., Serum Albumin, Adv. Protein Chem., 1985, 37, 161–245. 10.1016/S0065-3233(08)60065-0.

    Article  CAS  PubMed  Google Scholar 

  2. S. Curry, Lessons from the Crystallographic Analysis of Small Molecule Binding to Human Serum Albumin, Drug Metab. Pharmacokinet., 2009, 24(4), 342–357. 10.2133/dmpk.24.342.

    Article  CAS  PubMed  Google Scholar 

  3. A. Varshney, P. Sen, E. Ahmad, M. Rehan, N. Subbarao and R. H. Khan, Ligand Binding Strategies of Human Serum Albumin: How Can the Cargo Be Utilized?, Chirality, 2010, 22(1), 77–87. 10.1002/chir.20709.

    Article  CAS  PubMed  Google Scholar 

  4. A. Sułkowska, M. Maciążek-Jurczyk, B. Bojko, J. Równicka, I. Zubik-Skupień, E. Temba, D. Pentak and W. W. Sułkowski, Competitive Binding of Phenylbutazone and Colchicine to Serum Albumin in Multidrug Therapy: a Spectroscopic Study, J. Mol. Struct., 2008, 881(1–3), 97–106. 10.1016/j.molstruc.2007.09.001.

    Article  CAS  Google Scholar 

  5. I. Petitpas, A. A. Bhattacharya, S. Twine, M. East and S. Curry, Crystal Structure Analysis of Warfarin Binding to Human Serum Albumin. Anatomy of Drug Site I, J. Biol. Chem., 2001, 276, 22804–22809. 10.1074/jbc.M100575200.

    Article  CAS  PubMed  Google Scholar 

  6. O. K. Abou-Zied and O. I. K. Al-Shihi, Characterization of Subdomain IIA Binding Site of Human Serum Albumin in its Native, Unfolded, and Refolded States Using Small Molecular Probes, J. Am. Chem. Soc., 2008, 130(32), 10793–10801. 10.1021/ja8031289.

    Article  CAS  PubMed  Google Scholar 

  7. P. Hazra, D. Chakrabarty, A. Chakraborty and N. Sarkar, Probing Protein-Surfactant Interaction by Steady State and Time-Resolved Fluorescence Spectroscopy, Biochem. Biophys. Res. Commun., 2004, 314(2), 543–549. 10.1016/j.bbrc.2003.12.118.

    Article  CAS  PubMed  Google Scholar 

  8. A. Samanta, B. K. Paul and N. Guchhait, Spectroscopic Probe Analysis for Exploring Probe-Protein Interaction: a Mapping of Native, Unfolding and Refolding of Protein Bovine Serum Albumin by Extrinsic Fluorescence Probe, Biophys. Chem., 2011, 156(2–3), 128–139. 10.1016/j.bpc.2011.03.008.

    Article  CAS  PubMed  Google Scholar 

  9. A. Sharma, P. K. Agarwal and S. Deep, Characterization of Different Conformations of Bovine Serum Albumin and Their Propensity to Aggregate in the Presence of N-cetyl-N,N,N-trimethyl Ammonium Bromide, J. Colloid Interface Sci., 2010, 343(2), 454–462. 10.1016/j.jcis.2009.12.012.

    Article  CAS  PubMed  Google Scholar 

  10. N. Turro, X. Lei, K. P. Ananthapadmanabhan and M. Aronson, Spectroscopic Probe Analysis of Protein-Surfactant Interactions: the BSA/SDS System, Spectroscopic Probing of the Microenvironment in a Protein-Surfactant Assembly, Langmuir, 1995, 11(7), 2525–2533. 10.1021/la00007a035.

    Article  CAS  Google Scholar 

  11. U. Anand, C. Jash and S. Mukherjee, Spectroscopic Probing of the Microenvironment in a Protein-Surfactant Assembly, J. Phys. Chem. B, 2010, 114(48), 15839–15845. 10.1021/jp106703h.

    Article  CAS  PubMed  Google Scholar 

  12. U. Anand and S. Mukherjee, Binding, Unfolding and Refolding Dynamics of Serum Albumins, Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(12), 5394–5404. 10.1016/j.bbagen.2013.05.017.

    Article  CAS  Google Scholar 

  13. E. L. Gelamo, C. H. T. P. Silva, H. Imasato and M. Tabak, Interaction of Bovine(BSA) and Human(HSA) Serum Albumins with Ionic Surfactants: Spectroscopy and Modelling, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2002, 1594(1), 84–99. 10.1016/S0167-4838(01)00287-4.

    Article  CAS  Google Scholar 

  14. E. L. Gelamo and M. Tabak, Spectroscopic Studies on the Interaction of Bovine (BSA) and Human (HSA) Serum Albumins with Ionic Surfactants, Spectrochim. Acta, Part A, 2000, 56(11), 2255–2271. 10.1016/S1386-1425(00)00313-9.

    Article  Google Scholar 

  15. J. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 3rd edn,2007.

    Google Scholar 

  16. E. Lissi, E. Abuin, M. E. Lanio and C. Alvarez, New and Simple Procedure for the Evaluation of the Association of Surfactants to Proteins, J. Biochem. Biophys. Methods, 2002, 50(2–3), 261–268. 10.1016/S0165-022X(01)00237-8.

    Article  CAS  PubMed  Google Scholar 

  17. P. R. Callis, Molecular Orbital Theory of the1Lb1La States of Indole, J. Chem. Phys., 1991, 95(6), 4230, 10.1063/1.460778.

    Article  CAS  Google Scholar 

  18. J. T. Vivian and P. R. Callis, Mechanisms of Tryptophan Fluorescence Shifts in Proteins, Biophys. J., 2001, 80(5), 2093–2109. 10.1016/S0006-3495(01)76183-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. A. Burstein, N. S. Vedenkina and M. N. Ivkova, Fluorescence and the Location of Tryptophan Residues in Protein Molecules, Photochem. Photobiol., 1973, 18(4), 263–279. 10.1111/j.1751-1097.1973.tb06422.x.

    Article  CAS  PubMed  Google Scholar 

  20. D. J. Birkett, S. P. Myers and G. Sudlow, Effects of Fatty Acids on Two Specific Drug Binding Sites on Human Serum Albumin, Mol. Pharmacol., 1977, 13(6), 987–992.

    CAS  PubMed  Google Scholar 

  21. G. Sudlow, D. J. Birkett and D. N. Wade, Further Characterization of Specific Drug Binding Sites on Human Serum Albumin, Mol. Pharmacol., 1976, 12(6), 1052–1061.

    CAS  PubMed  Google Scholar 

  22. M. Wardell, Z. Wang, J. X. Ho, J. Robert, F. Ruker, J. Ruble and D. C. Carter, The Atomic Structure of Human Methemalbumin at 1.9 A, Biochem. Biophys. Res. Commun., 2002, 291(4), 813–819. 10.1006/bbrc.2002.6540.

    Article  CAS  PubMed  Google Scholar 

  23. A. A. Bhattacharya, T. Grune and S. Curry, Crystallographic Analysis Reveals Common Modes of Binding of Medium and Long-Chain Fatty Acids to Human Serum Albumin, J. Mol. Biol., 2000, 303(5), 721–732. 10.1006/jmbi.2000.4158.

    Article  CAS  PubMed  Google Scholar 

  24. S. Curry, H. Mandelkow, P. Brick and N. Franks, Crystal Structure of Human Serum Albumin Complexed with Fatty Acid Reveals an Asymmetric Distribution of Binding Sites, Nat. Struct. Biol., 1998, 5, 827–835. 10.1038/1869.

    Article  CAS  PubMed  Google Scholar 

  25. B. Ahmad, M. Z. Ahmed, S. K. Haq and R. H. Khan, Guanidine Hydrochloride Denaturation of Human Serum Albumin Originates by Local Unfolding of Some Stable Loops in Domain III, Biochim. Biophys. Acta, Proteins Proteomics, 2005, 1750(1), 93–102. 10.1016/j.bbapap.2005.04.001.

    Article  CAS  Google Scholar 

  26. K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz and W. Minor, Structural and Immunologic Characterization of Bovine, Horse, and Rabbit Serum Albumins, Mol. Immunol., 2012, 52(3–4), 174–182. 10.1016/j.molimm.2012.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. Etienne, X. Assfeld and A. Monari, QM/MM Calculation of Absorption Spectra of Complex Systems: The Case of Human Serum Albumin, Comput. Theor. Chem., 2014, 1040–1041, 360–366. 10.1016/j.comptc.2014.01.009.

    Article  CAS  Google Scholar 

  28. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, UCSF Chimera—a Visualization System for Exploratory Research and Analysis, J. Comput. Chem., 2004, 25(13), 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  29. D. Otzen, Protein-Surfactant Interactions: A Tale of Many States, Biochim. Biophys. Acta, Proteins Proteomics, 2011, 1814(5), 562–591. 10.1016/j.bbapap.2011.03.003.

    Article  CAS  Google Scholar 

  30. Y. Moriyama, D. Ohta, K. Hachiya, Y. Mitsui and K. Takeda, Fluorescence Behavior of Tryptophan Residues of Bovine and Human Serum Albumins in Ionic Surfactant Solutions: a Comparative Study of the Two and One Tryptophan(s) of Bovine and Human Albumins, J. Protein Chem., 1996, 15(3), 265–272. 10.1007/BF01887115.

    Article  CAS  PubMed  Google Scholar 

  31. R. B. Weinberg, Exposure and Electronic Interaction of Tyrosine and Tryptophan Residues in Human Apolipoprotein A-IV, Biochemistry, 1988, 27(5), 1515–1521. 10.1021/bi00405a018.

    Article  CAS  PubMed  Google Scholar 

  32. R. F. Borkman and S. R. Phillips, Tyrosine-to-Tryptophan Energy Transfer and the Structure of Calt Gamma-II Crystallin, Exp. Eye Res., 1985, 40(6), 819–826. 10.1016/0014-4835(85)90127-7.

    Article  CAS  PubMed  Google Scholar 

  33. S. Gorinstein, I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H. T. Lerner, S. Trakhtenberg and O. Martín-Belloso, Intrinsic Tryptophan Fluorescence of Human Serum Proteins and Related Conformational Changes, J. Protein. Chem., 2000, 19(8), 637–642. 10.1023/A:1007192017291.

    Article  CAS  PubMed  Google Scholar 

  34. D. Li, D. Hong, H. Guo, J. Chen and B. Ji, Probing the Influences of Urea on the Interaction of Sinomenine With Human Serum Albumin by Steady-State Fluorescence, J. Photochem. Photobiol., B, 2012, 117, 126–131. 10.1016/j.jphotobiol.2012.09.007.

    Article  CAS  Google Scholar 

  35. Y. Saito, H. Tachibana, H. Hayashi and A. Wada, Excitation-Energy Transfer Between Tyrosine and Tryptophan in Proteins Evaluated By the Simultaneous Measurement of Fluorescence and Absorbance, Photochem. Photobiol., 1981, 33(3), 289–295. 10.1111/j.1751-1097.1981.tb05420.x.

    Article  CAS  Google Scholar 

  36. J. Steinhardt, J. Krijn and J. G. Leidy, Differences Between Bovine and Human Serum Albumins: Binding Isotherms, Optical Rotatory Dispersion, Viscosity, Hydrogen Ion Titration, and Fluorescence Effects, Biochemistry, 1971, 10(22), 4005–4015. 10.1021/bi00798a001.

    Article  CAS  PubMed  Google Scholar 

  37. M. Eisenhawer, S. Cattarinussi, A. Kuhn and H. Vogel, Fluorescence Resonance Energy Transfer Shows a Close Helix-Helix Distance in the Transmembrane M13 Procoat Protein, Biochemistry, 2001, 40(41), 12321–12328. 10.1021/bi0107694.

    Article  CAS  PubMed  Google Scholar 

  38. J. Eisinger, B. Feuer and A. A. Lamola, Intramolecular Singlet Excitation Transfer. Applications to Polypeptides, Biochemistry, 1969, 8(10), 3908–3915. 10.1021/bi00838a005.

    Article  CAS  PubMed  Google Scholar 

  39. M. J. Kronman and L. G. Holmes, The Fluorescence of Native, Denatured and Reduced-Denatured Proteins, Photochem. Photobiol., 1971, 14(2), 113–134. 10.1111/j.1751-1097.1971.tb06157.x.

    Article  CAS  Google Scholar 

  40. M. R. Bray, A. D. Carriere and A. J. Clarke, Quantification of Tryptophan and Tyrosine Residues in Proteins by Fourth-Derivative Spectroscopy, Anal. Biochem., 1994, 221(2), 278–284. 10.1006/abio.1994.1412.

    Article  CAS  PubMed  Google Scholar 

  41. A. F. Fell, The Analysis of Aromatic Amino Acids by Second and Fourth Derivative UV-Spectroscopy, J. Pharm. Pharmacol., 1979, 31(S1), 23P, 10.1111/j.2042-7158.1979.tb11571.x.

    PubMed  Google Scholar 

  42. A.-M. Ning, L. Meng, Z.-L. Zhao, X.-F. Zheng and X.-S. Wan, Mechanism of Interaction between Bovine Serum Albumin and Sodium Dodecyl Sulfate, Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2013, 29(12), 2639–2646. 10.3866/PKU.WHXB201310281.

    Article  CAS  Google Scholar 

  43. E. Padrós, M. Duñach, A. Morros, M. Sabés and J. Mañosa, Fourth-Derivative Spectrophotometry of Proteins, Trends Biochem. Sci., 1984, 9(12), 508–510. 10.1016/0968-0004(84)90272-X.

    Article  Google Scholar 

  44. G. Talsky, L. Mayring and H. Kreuzer, High-Resolution, High-Order UV/Vis Derivative Spectroscopy, Photochem. Photobiol., 1978, 17(11), 785–799. 10.1002/anie.197807853.

    Google Scholar 

  45. G. Azadi, A. Chauhan and A. Tripathi, Dilution of Protein-Surfactant Complexes: a Fluorescence Study, Protein Sci., 2013, 22(9), 1258–1265. 10.1002/pro.2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Jana, S. Ghosh, S. Dalapati and N. Guchhait, Exploring Structural Change of Protein Bovine Serum Albumin by External Perturbation Using Extrinsic Fluorescence Probe: Spectroscopic Measurement, Molecular Docking and Molecular Dynamics Simulation, Photochem. Photobiol. Sci., 2012, 11(2), 323–332. 10.1039/C1PP05180F.

    Article  CAS  PubMed  Google Scholar 

  47. K. Takeda, M. Miura and T. Takagi, Stepwise Formation of Complexes Between Sodium Dodecyl Sulfate and Bovine Serum Albumin Detected by Measurements of Electric Conductivity, Binding Isotherm, and Circular Dichroism, J. Colloid Interface Sci., 1981, 82(1), 38–44. 10.1016/0021-9797(81)90121-1.

    Article  CAS  Google Scholar 

  48. M. S. Ali, N. Gull, J. M. Khan, V. K. Aswald, R. H. Khan and Kabir-ud-Dina, Unfolding of Rabbit Serum Albumin by Cationic Surfactants: Surface Tensiometry, Small-Angle Neutron Scattering, Intrinsic Fluorescence, Resonance Rayleigh Scattering and Circular Dichroism Studies, J. Colloid Interface Sci., 2010, 352(2), 436–443. 10.1016/j.jcis.2010.08.073.

    Article  CAS  PubMed  Google Scholar 

  49. T. Chakraborty, I. Chakraborty, S. P. Moulik and S. Ghosh, Physicochemical and Conformational Studies on BSA-Surfactant Interaction in Aqueous Medium, Langmuir, 2009, 25(5), 3062–3074. 10.1021/la803797x.

    Article  CAS  PubMed  Google Scholar 

  50. F. Geng, L. Zheng, L. Yu, G. Li and C. Tung, Interaction of Bovine Serum Albumin and Long-chain Imidazolium Ionic Liquid Measured by Fluorescence Spectra and Surface Tension, Process Biochem., 2010, 45(3), 306–311. 10.1016/j.procbio.2009.10.001.

    Article  CAS  Google Scholar 

  51. M. A. Mir, N. Gull, J. M. Khan, R. H. Khan, A. A. Dar and G. M. Rather, Interaction of Bovine Serum Albumin with Cationic Single Chain + Nonionic and Cationic Gemini + Nonionic Binary Surfactant Mixtures, J. Phys. Chem. B, 2010, 114(9), 3197–3204. 10.1021/jp908985v.

    Article  CAS  PubMed  Google Scholar 

  52. S. F. Santos, D. Zanette, H. Fischer and R. Itri, A Systematic Study of Bovine Serum Albumin (BSA) and Sodium Dodecyl Sulfate (SDS) Interactions by Surface Tension and Small Angle X-ray Scattering, J. Colloid Interface Sci., 2003, 262(2), 400–408. 10.1016/S0021-9797(03)00109-7.

    Article  CAS  PubMed  Google Scholar 

  53. E. L. Gelamo, R. Itri, A. Alonso, J. V. da Silva and M. Tabak, Small-angle X-ray Scattering and Electron Paramagnetic Resonance Study of the Interaction of Bovine Serum Albumin with Ionic Surfactants, J. Colloid Interface Sci., 2004, 277(2), 471–482. 10.1016/j.jcis.2004.04.065.

    Article  CAS  PubMed  Google Scholar 

  54. E. Lissi, C. Calderón and A. Campos, Evaluation of the Number of Binding Sites in Proteins from their Intrinsic Fluorescence: Limitations and Pitfalls, Photochem. Photobiol., 2013, 89(6), 1413–1416. 10.1111/php.12112.

    Article  CAS  PubMed  Google Scholar 

  55. T. N. Tikhonova, E. A. Shirshin, G. S. Budylin, V. V. Fadeev and G. P. Petrova, Assessment of the Europium(iii) Binding Sites on Albumin Using Fluorescence Spectroscopy, J. Phys. Chem. B, 2014, 118(24), 6626–6633. 10.1021/jp501277z.

    Article  CAS  PubMed  Google Scholar 

  56. M. van de Weert and L. Stella, Fluorescence Quenching and Ligand Binding: A Critical Discussion of a Popular Methodology, J. Mol. Struct., 2011, 998(1–3), 144–150. 10.1016/j.molstruc.2011.05.023.

    Article  CAS  Google Scholar 

  57. W. L. Butler, Fourth Derivative Spectra, Methods Enzymol., 1979, 56, 501–515. 10.1016/0076-6879(79)56048-0.

    Article  CAS  PubMed  Google Scholar 

  58. A. Savitzky and M. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 1964, 36(8), 1627–1639. 10.1021/ac60214a047.

    Article  CAS  Google Scholar 

  59. E. Padrós, A. Morros, J. Mañosa and M. Duñach, The State of Tyrosine and Phenylalanine Residues in Proteins Analyzed by Fourth-Derivative Spectrophotometry, Eur. J. Biochem., 1982, 122(1), 117–122. 10.1111/j.1432-1033.1982.tb06844.x.

    Article  Google Scholar 

  60. B. Ojha and G. Das, Role of Hydrophobic and Polar Interactions for BSA-amphiphile Composites, Chem. Phys. Lipids, 2011, 164(2), 144–150. 10.1016/j.chemphyslip.2010.12.004.

    Article  CAS  PubMed  Google Scholar 

  61. J. Tian, Y. Zhao, X. Liu and S. Zhao, A Steady-State and Time-Resolved Fluorescence, Circular Dichroism Study on the Binding of Myricetin to Bovine Serum Albumin, Luminescence, 2009, 24(6), 386–393. 10.1002/bio.1124.

    CAS  PubMed  Google Scholar 

  62. Y. Engelborghs, Correlating Protein Structure and Protein Fluorescence, J. Fluoresc., 2003, 13(1), 9–16. 10.1023/A:1022398329107.

    Article  CAS  Google Scholar 

  63. Y. Engelborghs, The Analysis of Time Resolved Protein Fluorescence in Multi-tryptophan Proteins, Spectrochim. Acta, Part A, 2001, 57(11), 2255–2270. 10.1016/S1386-1425(01)00485-1.

    Article  CAS  Google Scholar 

  64. O. Julien, G. Wang, A. Jonckheer, Y. Engelborghs and B. D. Sykes, Tryptophan Side Chain Conformers Monitored by NMR and Time-Resolved Fluorescence Spectroscopies, Proteins: Struct., Funct., Bioinf., 2012, 80(1), 239–245. 10.1002/prot.23198.

    Article  CAS  Google Scholar 

  65. X. Shen and J. R. Knutson, Subpicosecond Fluorescence Spectra of Tryptophan in Water, J. Phys. Chem. B, 2001, 105(26), 6260–6265. 10.1021/jp010384v.

    Article  CAS  Google Scholar 

  66. A. G. Szabo and D. M. Rayner, Fluorescence Decay of Tryptophan Conformers, J. Am. Chem. Soc., 1980, 102(2), 554–563. 10.1021/ja00522a020.

    Article  CAS  Google Scholar 

  67. F. W. J. Teale, The ultraviolet fluorescence of proteins in neutral solution, Biochem. J., 1960, 76(2), 381–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. J. B. A. Ross, W. R. Laws, K. W. Rousslang and H. R. Wyssbrod, Tyrosine Fluorescence and Phosphorescence from Proteins and Polypeptides, Top. Fluoresc. Spectrosc., 2002, 3, 1–64. 10.1007/0-306-47059-4_1.

    Article  Google Scholar 

  69. R. W. Cowgill, Fluorescence and Protein Structure: XIV. Tyrosine Fluorescence in Helical Muscle Proteins, Biochim. Biophys. Acta, Protein Struct., 1968, 168(3), 417–430. 10.1016/0005-2795(68)90175-X.

    Article  CAS  Google Scholar 

  70. N. Vekshin, M. Vincent and J. Gallay, Tyrosine Hypochromism and Absence of Tyrosine-Tryptophan Energy Transfer in Phospholipase A2 and Ribonuclease T1, Chem. Phys., 1993, 171(1–2), 231–236. 10.1016/0301-0104(93)85146-Y.

    Article  CAS  Google Scholar 

  71. M. Weissbluth, Hypochromism, Q. Rev. Biophys., 1971, 4(1), 1–34. 10.1017/S003358350000038X.

    Article  CAS  PubMed  Google Scholar 

  72. W. Bal, M. Sokołowska, E. Kurowskaa and P. Faller, Binding of Transition Metal Ions to Albumin: Sites, Affinities and Rates, Biochim. Biophys. Acta, Gen. Subj., 2013, 1830, 5444–5455. 10.1016/j.bbagen.2013.06.018.

    Article  CAS  Google Scholar 

  73. S. L. Guthans and W. T. Morgan, The Interaction of Zinc, Nickel and Cadmium With Serum Albumin and Histidine-rich Glycoprotein Assessed by Equilibrium Dialysis and Immunoadsorbent Chromatography, Arch. Biochem. Biophys., 1982, 218(1), 320–328. 10.1016/0003-9861(82)90350-2.

    Article  CAS  PubMed  Google Scholar 

  74. E. Ohyoshi, Y. Hamada, K. Nakata and S. Kohata, The Interaction Between Human and Bovine Serum Albumin and Zinc Studied by a Competitive Spectrophotometry, J. Inorg. Biochem., 1999, 75(3), 213–218. 10.1016/S0162-0134(99)00090-2.

    Article  CAS  PubMed  Google Scholar 

  75. S. Trisak, P. Doumgdee and B. M. Rode, Binding of Zinc and Cadmium to Human Serum Albumin, Int. J. Biochem., 1990, 22(9), 977–981. 10.1016/0020-711X(90)90203-F.

    Article  CAS  PubMed  Google Scholar 

  76. Z. Yongqia, H. Xuying, D. Chao, L. Hong, W. Sheyi and S. Panwen, Structural Studies on Metal-Serum Albumin. IV. The Interaction of Zn(ii), Cd(ii) and Hg(ii) with HSA and BSA, Biophys. Chem., 1992, 42(2), 201–211. 10.1016/0301-4622(92)85010-2.

    Article  Google Scholar 

  77. Z. Yongqia, W. Yuwen, H. Xuying, H. Jiesheng, H. Yunqin, L. Pong and S. Panwen, Chemistry Equilibrium dialysis of metal-serum albumin. I. Successive stability constants of Zn(ii) -serum albumin and the Zn2+-induced cross-linking self-association, Biophys. Chem., 1994, 51(1), 81–87.

    Article  Google Scholar 

  78. S. Baroni, G. Pariani, G. Fanali, D. Longo, P. Ascenzi, S. Aime and M. Fasano, Thermodynamic Analysis of Hydration in Human Serum Heme–albumin, Biochem. Biophys. Res. Commun., 2009, 385(3), 385–389. 10.1016/j.bbrc.2009.05.075.

    Article  CAS  PubMed  Google Scholar 

  79. A. K. Shaw and S. K. Pal, Resonance Energy Transfer and Ligand Binding Studies on pH-induced Folded States of Human Serum Albumin, J. Photochem. Photobiol., B, 2008, 90(3), 187–197. 10.1016/j.jphotobiol.2008.01.001.

    Article  CAS  Google Scholar 

  80. K. Kalyanasundaram and J. K. Thomas, Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems, J. Am. Chem. Soc., 1977, 99(7), 2039–2044. 10.1021/ja00449a004.

    Article  CAS  Google Scholar 

  81. L. Antonov, Fourth Derivative Spectroscopy—a Critical View, Anal. Chim. Acta, 1997, 349(1–3), 295–301. 10.1016/S0003-2670(97)00210-9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny A. Shirshin.

Additional information

Electronic supplementary information (ESI) available: Comparison of Raman emission from water and fluorescence of BSA; representative fluorescence decay curves for BSA and its fit; statistical data (χ2), lifetime and its relative amplitudes for fitting of decays; determination of the critical micelle concentration for SDS in Tris-buffer by means of pyrene (Py) fluorescence. See DOI: 10.1039/c4pp00432a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanova, N.G., Shirshin, E.A., Maksimov, E.G. et al. Tyrosine fluorescence probing of the surfactant-induced conformational changes of albumin. Photochem Photobiol Sci 14, 897–908 (2015). https://doi.org/10.1039/c4pp00432a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00432a

Navigation