Skip to main content
Log in

Development of highly thermoresponsive fluorescent sensors consisting of plasmonic silver nanoprisms and poly(N-isopropylacrylamide)–fluorophore composites

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We developed a new hybrid consisting of Ag nanoprisms, poly(N-isopropylacrylamide) (PNIPAm), and fluorophores via layer-by-layer assembly. The fluorescence intensity below the lower critical solution temperature (LCST) of PNIPAm was 6.4 times stronger than that above the LCST, meaning that the hybrids can function as nanosized highly thermoresponsive fluorescent sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu and S. Uchiyama, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nat. Commun., 2013, 3, 1714.

    Google Scholar 

  2. Y. Takei, S. Arai, A. Murata, M. Takabayashi, K. Oyama, S. Ishiwata, S. Takeoka and M. Suzuki, A nanoparticle-based ratiometric and self-calibrated fluorescent thermometer for single living cells, ACS Nano, 2014, 8, 198–206.

    Article  CAS  Google Scholar 

  3. N. Chandrasekharan and L. A. Kelly, A dual fluorescence temperature sensor based on perylene/exciplex interconversion, J. Am. Chem. Soc., 2001, 123, 9898–9899.

    Article  CAS  Google Scholar 

  4. S. Uchiyama, Y. Matsumura, A. Prasanna de Silva and K. Iwai, Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans, Anal. Chem., 2003, 75, 5926–5935.

    Article  CAS  Google Scholar 

  5. C. Gota, K. Okabe, T. Funatsu, Y. Harada and S. Uchiyama, Hydrophilic fluorescent nanogel thermometer for intracellular thermometry, J. Am. Chem. Soc., 2009, 131, 2766–2767.

    Article  CAS  Google Scholar 

  6. T. Tsuji, S. Yoshida, A. Yoshida and S. Uchiyama, Cationic fluorescent polymeric thermometers with the ability to enter yeast and mammalian cells for practical intracellular temperature measurements, Anal. Chem., 2013, 85, 9815–9823.

    Article  CAS  Google Scholar 

  7. R. E. Brewster, M. J. Kidd and M. D. Schuh, Optical thermometer based on the stability of a phosphorescent 6-bromo-2-naphthol/a-cyclodextrin2 ternary complex, Chem. Commun., 2001, 1134–1135.

    Google Scholar 

  8. J. Wongkongkatep, R. Ladadat, W. Lappermpunsap, P. Wongkongkatep, P. Phinyocheep, A. Ojida and I. Hamachi, Thermoresponsive fluorescent sensor based on core/shell nanocomposite composed of gold nanoparticles and poly(N-isopropylacrylamide), Chem. Lett., 2010, 39, 184–185.

    Article  CAS  Google Scholar 

  9. A. Nagai, R. Yoshii, T. Otsuka, K. Kokado and Y. Chujo, BODIPY-based chain transfer agent: reversibly thermoswitchable luminescent gold nanoparticle stabilized by BODIPY-terminated water-soluble polymer, Langmuir, 2010, 26, 15644–15649.

    Article  CAS  Google Scholar 

  10. J. Liu, A. Li, J. Tang, R. Wang, N. Konga and T. P. Davis, Thermoresponsive silver/polymer nanohybrids with switchable metal enhanced fluorescence, Chem. Commun., 2012, 48, 4680–4682.

    Article  CAS  Google Scholar 

  11. F. Tang, N. Ma, L. Tong, F. He and L. Li, Control of metal-enhanced fluorescence with pH- and thermoresponsive hybrid microgels, Langmuir, 2012, 28, 883–888.

    Article  CAS  Google Scholar 

  12. F. Tang, N. Ma, X. Wang, F. He and L. Li, Hybrid conjugated polymer-Ag@PNIPAM fluorescent nanoparticles with metal-enhanced fluorescence, J. Mater. Chem., 2011, 21, 16943–16948.

    Article  CAS  Google Scholar 

  13. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 2001, 294, 1901–1903.

    Article  CAS  Google Scholar 

  14. E. Hao and G. C. Schatz, Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys., 2004, 120, 357–366.

    Article  CAS  Google Scholar 

  15. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz and C. A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation, Nature, 2003, 425, 487–490.

    Article  CAS  Google Scholar 

  16. K. Sugawa and Y. Tanoue, Simple fabrication of two-dimensional self-assemblies consisting of gold and silver nanoparticles at an air/toluene interface and their surface-enhanced raman scattering activity, Jpn. J. Appl. Phys., 2012, 51, 06FG10.

    Article  Google Scholar 

  17. K. G. Stamplecoskie and J. C. Scaiano, Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles, J. Am. Chem. Soc., 2010, 132, 1825–1827.

    Article  CAS  Google Scholar 

  18. D. E. Charles, D. Aherne, M. Gara, D. M. Ledwith, Y. K. Gun’ko, J. M. Kelly, W. J. Blau and M. E. Brennan-Fournet, Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing, ACS Nano, 2010, 4, 55–64.

    Article  CAS  Google Scholar 

  19. K. M. Mayer and J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chem. Rev., 2011, 111, 3828–3857.

    Article  CAS  Google Scholar 

  20. R. Pelto, Temperature-sensitive aqueous microgels, Adv. Colloid Interface Sci., 2000, 85, 1–33.

    Article  Google Scholar 

  21. J. R. Lakowicz, Radiative decay engineering: biophysical and biomedical applications, Anal. Biochem., 2001, 298, 1–24.

    Article  CAS  Google Scholar 

  22. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov and S. V. Gaponenko, Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment, J. Phys. Chem. C, 2012, 116, 10723–10733.

    Article  CAS  Google Scholar 

  23. D. Cheng and Q.-H. Xu, Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles, Chem. Commun., 2007, 248–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Sugawa.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00375f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugawa, K., Ichikawa, R., Takeshima, N. et al. Development of highly thermoresponsive fluorescent sensors consisting of plasmonic silver nanoprisms and poly(N-isopropylacrylamide)–fluorophore composites. Photochem Photobiol Sci 14, 870–874 (2015). https://doi.org/10.1039/c4pp00375f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00375f

Navigation