Skip to main content
Log in

Catechin as a new improving agent for a photo-Fenton-like system at near-neutral pH for the removal of inderal

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodegradation of inderal in a photo-Fenton like system at near-neutral pH modified with catechin, a natural catecholate siderophore, was investigated under simulated sunlight. The main factors influencing the process, such as Fe(iii)-catechin complexes, pH, and catechin concentration were examined. Photodegradation of inderal was strongly dependent on pH, following the order pH 3.0 < 5.0 < 7.0 < 6.0. Formation of the Fe(iii)-catechin complex resulted in the stabilization of ferric iron and generation of ˙OH under irradiation at near-neutral pH values. The removal of inderal was about 75% under optimal conditions (50 μmol L−1 Fe(iii) and 200 μmol L−1 catechin at pH 6.0). The photodegradation products of inderal were identified by LC-ESI-MS and GC-MS, and the photodegradation pathway was proposed. Iron in the Fe(iii)-catechin system was reused by simple addition of catechin to the reaction mixture. Results of this study suggest that the Fe(iii)-catechin complex may be used in the photo-Fenton like process, an advanced approach to the removal of organic pollutants at near-neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. H. Fenton, LXXIII.—Oxidation of tartaric acid in presence of iron J. Chem. Soc., Dalton Trans. 1894 65 899–910.

    Article  CAS  Google Scholar 

  2. W. Y. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna and G. Mailhot, Assessment of the Fe(III)-EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A Environ. Sci. Technol. 2013 47 1952–1959.

    Article  CAS  Google Scholar 

  3. L. Chen, C. Y. Deng, F. Wu and N. S. Deng, Decolorization of the azo dye Orange II in a montmorillonite/H2O2 system Desalination 2011 281 306–311.

    Article  CAS  Google Scholar 

  4. Y. G. Zuo and J. Zhan, Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water Atmos. Environ. 2005 39 27–37.

    Article  CAS  Google Scholar 

  5. E. M. Glebov, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, X. Zhang, F. Wu and N. S. Deng, Intermediates in photochemistry of Fe(III) complexes with carboxylic acids in aqueous solutions Photochem. Photobiol. Sci. 2011 10 425–430.

    Article  CAS  Google Scholar 

  6. Y. Deng and J. D. Englehardt, Treatment of landfill leachate by the Fenton process Water Res. 2006 40 3683–3694.

    Article  CAS  Google Scholar 

  7. S. Q. Liu, L. R. Feng, N. Xu, Z. G. Chen and X. M. Wang, Magnetic nickel ferrite as a heterogeneous photo-Fenton catalyst for the degradation of rhodamine B in the presence of oxalic acid Chem. Eng. J. 2012 203 432–439.

    Article  CAS  Google Scholar 

  8. L. Y. Ge, H. H. Deng, F. Wu and N. S. Deng, Microalgae-promoted photodegradation of two endocrine disrupters in aqueous solutions J. Technol. Biotechnol. 2009 84 331–336.

    Article  CAS  Google Scholar 

  9. A. Durán, J. M. Monteagudo and E. Amores, Solar photo-Fenton degradation of Reactive Blue 4 in a CPC reactor Appl. Catal., B 2008 80 42–50.

    Article  Google Scholar 

  10. H. Katsumata, S. Kaneco, T. Suzuki, K. Ohta and Y. Yobiko, Photo-Fenton degradation of alachlor in the presence of citrate solution J. Photochem. Photobiol., A 2006 180 38–45.

    Article  CAS  Google Scholar 

  11. Y. Chen, F. Wu, Y. X. Lin, N. S. Deng, N. Bazhin and E. Glebov, Photodegradation of glyphosate in the ferrioxalate system J. Hazard. Mater. 2007 148 360–365.

    Article  CAS  Google Scholar 

  12. Y. G. Zuo, J. Hoigné, Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog water Science 1993 260 71–73.

    Article  CAS  Google Scholar 

  13. Y. G. Zuo and J. Hoigne, Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron (III)-oxalato complexes Environ. Sci. Technol. 1992 26 1014–1022.

    Article  CAS  Google Scholar 

  14. P. Kocot, A. Karocki and Z. Stasicka, Photochemistry of the Fe(III)-EDTA complexes J. Photochem. Photobiol., A 2006 179 176–183.

    Article  CAS  Google Scholar 

  15. E. Lipczynska-Kochany and J. Kochany, Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH Chemosphere 2008 73 745–750.

    Article  CAS  Google Scholar 

  16. C. Fan, L. Tsui and M. Liao, Parathion degradation and its intermediate formation by Fenton process in neutral environment Chemosphere 2011 82 229–236.

    Article  CAS  Google Scholar 

  17. W. Y. Huang, M. Brigante, F. Wu, K. Hanna and G. Mailhot, Development of a new homogenous photo-Fenton process using Fe(III)-EDDS complexes J. Photochem. Photobiol., A 2012 239 17–23.

    Article  CAS  Google Scholar 

  18. J. A. Sánchez Pérez, I. M. Román Sánchez, I. Carra, A. Cabrera Reina, J. L. Casas López and S. Malato, Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs J. Hazard. Mater. 2013 244-245, 195–203.

    Article  Google Scholar 

  19. I. Carra, S. Malato, M. Jiménez, M. I. Maldonado, J. A. Sánchez Pérez, Microcontaminant removal by solar photo-Fenton at natural pH run with sequential and continuous iron additions Chem. Eng. J. 2014 235 132–140.

    Article  CAS  Google Scholar 

  20. J. Granger and N. M. Price, The importance of siderophores in iron nutrition of heterotrophic marine bacteria Limnol. Oceanogr. 1999 44 541–555.

    Article  CAS  Google Scholar 

  21. T. P. Murphy, D. R. Lean and C. Nalewajko, Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae Science 1976 192 900–902.

    Article  CAS  Google Scholar 

  22. D. A. Hutchins, A. E. Witter, A. Butler and G. W. Luther, Competition among marine phytoplankton for different chelated iron species Nature 1999 400 858–861.

    Article  CAS  Google Scholar 

  23. C. G. Trick, R. J. Andersen, A. Gillam and P. J. Harrison, Prorocentrin: an extracellular siderophore produced by the marine dinoflagellate Prorocentrum minimum Science 1983 219 306–308.

    Article  CAS  Google Scholar 

  24. S. A. Amin, D. H. Green, F. C. Küpper and C. J. Carrano, Vibrioferrin, an Unusual Marine Siderophore: Iron Binding, Photochemistry, and Biological Implications Inorg. Chem. 2009 48 11451–11458.

    Article  CAS  Google Scholar 

  25. K. Barbeau, E. L. Rue, C. G. Trick, K. W. Bruland and A. Butler, Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups Limnol. Oceanogr. 2003 48 1069–1078.

    Article  CAS  Google Scholar 

  26. J. D. Martin, Y. Ito, V. V. Homann, M. G. Haygood and A. Butler, Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18 J. Biol. Inorg. Chem. 2006 11 633–641.

    Article  CAS  Google Scholar 

  27. R. T. Reid, D. H. Livet, D. J. Faulkner and A. Butler, A siderophore from a marine bacterium with an exceptional ferric ion affinity constant Nature 1993 366 455–458.

    Article  CAS  Google Scholar 

  28. J. F. Wu, G. W. Luther III, Complexation of Fe (III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach Mar. Chem. 1995 50 159–177.

    Article  CAS  Google Scholar 

  29. S. Pérez-Miranda, N. Cabirol, R. George-Téllez, L. S. Zamudio-Rivera, F. J. Fernández, O-CAS, a fast and universal method for siderophore detection J. Microbiol. Methods 2007 70 127–131.

    Article  Google Scholar 

  30. C. G. Hatchard and C. A. Parker, A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer Proc. R. Soc. London, Ser. A 1956 235 518–536.

    Article  CAS  Google Scholar 

  31. M. E. Bodini, M. A. Del Valle, R. Tapia, F. Leighton and L. Gonzalez, Study of the iron catechin complexes in dimethyl sulphoxide. Redox chemistry and interaction with superoxide radical anion in this medium Bol. Soc. Chil. Quím. 2001 46 309–317.

    Article  CAS  Google Scholar 

  32. M. J. Hynes, M. Ó. Coinceanainn, The kinetics and mechanisms of the reaction of iron (III) with gallic acid, gallic acid methyl ester and catechin J. Inorg. Biochem. 2001 85 131–142.

    Article  CAS  Google Scholar 

  33. A. S. Cornish and W. J. Page, The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management Microbiology 1998 144 1747–1754.

    Article  CAS  Google Scholar 

  34. Z. P. Wang, Z. Z. Liu, F. Yu, J. P. Zhu, Y. Chen and T. Tao, Siderophore-modified Fenton-like system for the degradation of propranolol in aqueous solutions at near neutral pH values Chem. Eng. J. 2013 229 177–182.

    Article  CAS  Google Scholar 

  35. F. Baldi, D. Marchetto, D. Zanchettin, E. Sartorato, S. Paganelli and O. Piccolo, A bio-generated Fe (III)-binding exopolysaccharide used as new catalyst for phenol hydroxylation Green Chem. 2010 12 1405–1409.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizheng Liu.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00371c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Guo, Y., Liu, Z. et al. Catechin as a new improving agent for a photo-Fenton-like system at near-neutral pH for the removal of inderal. Photochem Photobiol Sci 14, 473–480 (2015). https://doi.org/10.1039/c4pp00371c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00371c

Navigation