Skip to main content
Log in

Spray deposited β-Bi2O3 nanostructured films with visible photocatalytic activity for solar water treatment

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bismuth oxide thin films were obtained by the spray pyrolysis method using bismuth acetate as the precursor salt. The films were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), UV-vis diffuse reflectance, X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The XRD patterns indicated that the pure ß phase is obtained at 450 °C and was also confirmed by FTIR. This phase presents a nanoplate morphology which is adequate for the photocatalytic reactions. Moreover, the band gap value was 2.6 eV indicating a good capacity of visible light absorption. The photocatalytic degradation of the Methyl Orange (MO) dye was pH dependent, an acid solution being easier to degrade. However, the Bi2O3 films were easily converted into BiOCl when they were in contact with a solution containing HCl. In order to preserve the ß-Bi2O3 phase, the Acid Blue 113 dye with its natural pH of 8 was used to evaluate the stability of the photocatalytic activity after five degradation cycles. The photoactivity was practically stable indicating a good performance of the material. This encouraged us to test the films in a continuous flow solar reactor prototype for the degradation of the dye solution using sunlight radiation exclusively. The good performance of the ß-Bi2O3 films indicates that they can be used for sustainable water treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Xu, S. Ouyang, L. Liu, P. Reunchan, N. Umezawa and J. Ye, Recent advances in TiO2-based photocatalysis, J. Mater. Chem. A, 2014, 2, 12642–12661.

    Article  CAS  Google Scholar 

  2. T. Zhang, X. Wang and X. Zhang, Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment, Int. J. Photoenergy, 2014, 2014, 12.

    Google Scholar 

  3. M. Schlesinger, M. Weber, S. Schulze, M. Hietschold and M. Mehring, Metastable ß-Bi2O3 Nanoparticles with Potential for Photocatalytic Water Purification Using Visible Light Irradiation, ChemistryOpen, 2013, 2, 146–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. F. Cheng, B. B. Huang, J. B. Lu, Z. Y. Wang, B. Xu, X. Y. Qin, X. Y. Zhang and Y. Dai, Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs, Phys. Chem. Chem. Phys., 2010, 12, 15468–15475.

    Article  CAS  PubMed  Google Scholar 

  5. S. Iyyapushpam, S. T. Nishanthi, D. Pathinettam Padiyan, Photocatalytic degradation of methyl orange using a-Bi2O3 prepared without surfactant, J. Alloys Compd., 2013, 563, 104–107.

    Article  CAS  Google Scholar 

  6. X. Liu, L. Pan, J. Li, K. Yu and Z. Sun, Visible Light-Induced Photocatalytic Activity of Bi2O3 Prepared via Microwave-Assisted Method, J. Nanosci. Nanotechnol., 2013, 13, 5044–5047.

    Article  CAS  PubMed  Google Scholar 

  7. P. Malathy, K. Vignesh, M. Rajarajan and A. Suganthi, Enhanced photocatalytic performance of transition metal doped Bi2O3 nanoparticles under visible light irradiation, Ceram. Int., 2014, 40, 101–107.

    Article  CAS  Google Scholar 

  8. X. Xiao, R. Hu, C. Liu, C. Xing, C. Qian, X. Zuo, J. Nan and L. Wang, Facile large-scale synthesis of ß-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation, Appl. Catal., B, 2013, 140–141, 433–443.

    Article  CAS  Google Scholar 

  9. R. Hao, X. Xiao, X. Zuo, J. Nan and W. Zhang, Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres, J. Hazard. Mater., 2012, 209–210, 137–145.

    Article  PubMed  CAS  Google Scholar 

  10. F. Amano, K. Nogami and B. Ohtani, Enhanced photocatalytic activity of bismuth-tungsten mixed oxides for oxidative decomposition of acetaldehyde under visible light irradiation, Catal. Commun., 2012, 20, 12–16.

    Article  CAS  Google Scholar 

  11. Z. Ai, Y. Huang, S. Lee and L. Zhang, Monoclinic a-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation, J. Alloys Compd., 2011, 509, 2044–2049.

    Article  CAS  Google Scholar 

  12. J. Salazar-Perez, M. A. Camacho-Lopez, R. A. Morales-Luckie, V. Sánchez-Mendieta, F. Ureña-Nuñez, J. Arenas-Alatorre, Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles, Superficies Vacío, 2005, 18, 5.

    Google Scholar 

  13. N. Cornei, N. Tancret, F. Abraham, O. Mentré, New e-Bi2O3 Metastable Polymorph, Inorg. Chem., 2006, 45, 4886–4888.

    Article  CAS  PubMed  Google Scholar 

  14. L. Leontie, M. Caraman, M. Delibas and G. I. Rusu, Optical properties of bismuth trioxide thin films, Mater. Res. Bull., 2001, 36, 1629–1637.

    Article  CAS  Google Scholar 

  15. K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich and T. Brezesinski, Exceptional Photocatalytic Activity of Ordered Mesoporous ß-Bi2O3 Thin Films and Electrospun Nanofiber Mats, Chem. Mater., 2010, 22, 3079–3085.

    Article  CAS  Google Scholar 

  16. S. Sajjad, S. A. K. Leghari and J. Zhang, Nonstoichiometric Bi2O3: Efficient visible light photocatalyst, RSC Adv., 2013, 3, 1363–1367.

    Article  CAS  Google Scholar 

  17. A. Hameed, T. Montini, V. Gombac and P. Fornasiero, Surface Phases and Photocatalytic Activity Correlation of Bi2O3/Bi2O4-x Nanocomposite, J. Am. Chem. Soc., 2008, 130, 9658–9659.

    Article  CAS  PubMed  Google Scholar 

  18. M.-S. Gui, W.-D. Zhang, Q.-X. Su, C.-H. Chen, Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts, J. Solid State Chem., 2011, 184, 1977–1982.

    Article  CAS  Google Scholar 

  19. Y. Xu and M. A. A. Schoonen, The absolute energy positions of conduction adn valence bands of selected semiconducting minerals, Am. Mineral., 2000, 85, 14.

    Article  Google Scholar 

  20. J. A. Koza, E. W. Bohannan and J. A. Switzer, Superconducting Filaments Formed During Nonvolatile Resistance Switching in Electrodeposited d-Bi2O3, ACS Nano, 2013, 7, 9940–9946.

    Article  CAS  PubMed  Google Scholar 

  21. A. Helfen, S. Merkourakis, G. Wang, M. G. Walls, E. Roy, K. Yu-Zhang, Y. Leprince-Wang, Structure and stability studies of electrodeposited d-Bi2O3, Solid State Ionics, 2005, 176, 629–633.

    Article  CAS  Google Scholar 

  22. M. M. Patil, V. V. Deshpande, S. R. Dhage and V. Ravi, Synthesis of bismuth oxide nanoparticles at 100 °C, Mater. Lett., 2005, 59, 2523–2525.

    Article  CAS  Google Scholar 

  23. V. Fruth, M. Popa, D. Berger, R. Ramer, A. Gartner, A. Ciulei and A. Zaharescu, Deposition and characterisation of bismuth oxide thin films, J. Eur. Ceram. Soc., 2005, 25, 2171–2174.

    Article  CAS  Google Scholar 

  24. W. Xiaohong, Q. Wei and H. Weidong, Thin bismuth oxide films prepared through the sol–gel method as photocatalyst, J. Mol. Catal. A: Chem., 2007, 261, 167–171.

    Article  CAS  Google Scholar 

  25. C. D. Lokhande and C. H. Bhosale, Characterisation of chemically converted sprayed Bi2O3 to Bi2S3 thin films, Mater. Chem. Phys., 1997, 49, 46–49.

    Article  CAS  Google Scholar 

  26. O. Rico-Fuentes, E. Sánchez-Aguilera, C. Velasquez, R. Ortega-Alvarado, J. C. Alonso and A. Ortiz, Characterization of spray deposited bismuth oxide thin films and their thermal conversion to bismuth silicate, Thin Solid Films, 2005, 478, 96–102.

    Article  CAS  Google Scholar 

  27. T. N. Soitah, Y. Chunhui, Y. Yong, N. Yinghua and S. Liang, Properties of Bi2O3 thin films prepared via a modified Pechini route, Curr. Appl. Phys., 2010, 10, 1372–1377.

    Article  Google Scholar 

  28. L. Leontie, M. Caraman, A. Visinoiu and G. I. Rusu, On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition, Thin Solid Films, 2005, 473, 230–235.

    Article  CAS  Google Scholar 

  29. L. Leontie, M. Caraman, I. Evtodiev, E. Cuculescu and A. Mija, Optical properties of bismuth oxide thin films prepared by reactive d.c. magnetron sputtering onto p-GaSe (Cu), Phys. Status Solidi A, 2008, 205, 2052–2056.

    Article  CAS  Google Scholar 

  30. H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, G. H. Li and L. D. Zhang, delta-Bi2O3 thin films prepared by reactive sputtering: Fabrication and characterization, Thin Solid Films, 2006, 513, 142–147.

    Article  CAS  Google Scholar 

  31. P. Lunca Popa, S. Sønderby, S. Kerdsongpanya, J. Lu, N. Bonanos and P. Eklund, Highly oriented d-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering, J. Appl. Phys., 2013, 113, 046101.

  32. B. Sirota, J. Reyes-Cuellar, P. Kohli, L. Wang, M. E. McCarroll and S. M. Aouadi, Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering deposition, Thin Solid Films, 2012, 520, 6118–6123.

    Article  CAS  Google Scholar 

  33. D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, 1972, 5, 4709–4714.

    Article  Google Scholar 

  34. C. Wang, C. Shao, Y. Liu and L. Zhang, Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning, Scr. Mater., 2008, 59, 332–335.

    Article  CAS  Google Scholar 

  35. V. Simon, M. Todea, A. F. Takács, M. Neumann and S. Simon, XPS study on silica–bismuthate glasses and glass ceramics, Solid State Commun., 2007, 141, 42–47.

    Article  CAS  Google Scholar 

  36. P. Jagdale, M. Castellino, F. Marrec, S. E. Rodil and A. Tagliaferro, Nano sized bismuth oxy chloride by metal organic chemical vapour deposition, Appl. Surf. Sci., 2014, 303, 250–254.

    Article  CAS  Google Scholar 

  37. R. Malakooti, L. Cademartiri, Y. Akçakir, S. Petrov, A. Migliori and G. A. Ozin, Shape-Controlled Bi2S3 Nanocrystals and Their Plasma Polymerization into Flexible Films, Adv. Mater., 2006, 18, 2189–2194.

    Article  CAS  Google Scholar 

  38. L. Leontie, M. Caraman, M. Alexe and C. Harnagea, Structural and optical characteristics of bismuth oxide thin films, Surf. Sci., 2002, 507, 480–485.

    Article  Google Scholar 

  39. A. La Rosa Toro, M. Ponce Vargas, Evaluación de electrodos de espinela de cobalto y de dióxido de plomo en la oxidación electroquímica de colorantes azo, Rev. Soc. Quím. Perú, 2007, 73, 14.

    Google Scholar 

  40. T. A. McMurray, J. A. Byrne, P. S. M. Dunlop, J. G. M. Winkelman, B. R. Eggins and E. T. McAdams, Intrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilised TiO2 films, Appl. Catal., A, 2004, 262, 105–110.

    Article  CAS  Google Scholar 

  41. J. Dostanic, B. Grbic, N. Radic, S. Stojadinovic, R. Vasilic and Z. Vukovic, Preparation and photocatalyic properties of TiO2-P25 film prepared by spray pyrolysis method, Appl. Surf. Sci., 2013, 274, 321–327.

    Article  CAS  Google Scholar 

  42. V. Rodgher, J. Moreira, H. de Lasa and B. Serrano, Photocatalytic degradation of malic acid using a thin coated TiO2-film: Insights on the mechanism of photocatalysis, AIChE J., 2014, 60, 3286–3299.

    Article  CAS  Google Scholar 

  43. P. Pradhan, J. C. Alonso and M. Bizarro, Photocatalytic Performance of ZnO: Al Films under Different Light Sources, Int. J. Photoenergy, 2012, 2012, 7.

    Article  CAS  Google Scholar 

  44. M. Bizarro, M. A. Tapia-Rodríguez, M. L. Ojeda, J. C. Alonso and A. Ortiz, Photocatalytic activity enhancement of TiO2 films by micro and nano-structured surface modification, Appl. Surf. Sci., 2009, 255, 6274–6278.

    Article  CAS  Google Scholar 

  45. D. Friedmann, C. Mendive and D. Bahnemann, TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal., B, 2010, 99, 398–406.

    Article  CAS  Google Scholar 

  46. U. I. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, Springer, 2014.

    Book  Google Scholar 

  47. J. M. Herrmann, Fundamentals and misconceptions in photocatalysis, J. Photochem. Photobiol., A, 2010, 216, 85–93.

    Article  CAS  Google Scholar 

  48. M. Vautier, C. Guillard, J.-M. Herrmann, Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine, J. Catal., 2001, 201, 46–59.

    Article  CAS  Google Scholar 

  49. K. Dai, H. Chen, T. Peng, D. Ke and H. Yi, Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles, Chemosphere, 2007, 69, 1361–1367.

    Article  CAS  PubMed  Google Scholar 

  50. C. Baiocchi, M. C. Brussino, E. Pramauro, A. B. Prevot, L. Palmisano, G. Marcì, Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry, Int. J. Mass Spectrom., 2002, 214, 247–256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monserrat Bizarro.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00367e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera-Mota, K., Bizarro, M., Castellino, M. et al. Spray deposited β-Bi2O3 nanostructured films with visible photocatalytic activity for solar water treatment. Photochem Photobiol Sci 14, 1110–1119 (2015). https://doi.org/10.1039/c4pp00367e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00367e

Navigation