Skip to main content
Log in

Photoisomerization and reorientational dynamics of DTDCI in AOT/alkane reverse micelles containing non-aqueous polar liquids

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Molecular mobility of the symmetric carbocyanine fluorophore DTDCI was studied in AOT/alkane reverse micelles containing non-aqueous polar liquids DMF, formamide, ethylene glycol and glycerol by monitoring both the torsional photoisomerization and rotational reorientation, both of which were sensitive to microviscosity of the local environment. The DTDCI fluorophore resides completely within the AOT—polar liquid reverse micelle nano-droplets, where its dynamics were found to be significantly retarded irrespective of the polar liquid taken, due to a combination of electrostatic and hydrophobic forces that induce the guest DTDC+ cation to attach to the AOT molecules of the host droplet. The addition of strong hydrogen-bond donating polar liquids like formamide, ethylene glycol and glycerol causes a systematic enlargement of the droplets. Rotational dynamics of the fluorophore inside the nano-droplets was characterized by a diffusion coefficient comparable to that in highly viscous solvents like ethylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Correa, J. J. Silber, R. E. Riter and N. E. Levinger, Nonaqueous polar solvents in reverse micelle systems Chem. Rev. 2012 112 4569–4602.

    Article  CAS  PubMed  Google Scholar 

  2. I. Danielsson and B. Lindman, The definition of microemulsion Colloids Surf. 1981 3 391–392.

    Article  CAS  Google Scholar 

  3. R. D. Falcone, J. J. Silber and N. M. Correa, What are the factors that control non-aqueous/AOT/n-heptane reverse micelle sizes? A dynamic light scattering study Phys. Chem. Chem. Phys. 2009 11 11096–11100.

    Article  CAS  PubMed  Google Scholar 

  4. C. A. T. Laia, P. L. Cornejo, S. M. B. Costa, J. d’Oliveira and J. M. G. Martinho, Dynamic light scattering study of AOT microemulsions with nonaqueous polar additives in an oil continuous phase Langmuir 1998 14 3531–3537.

    Article  CAS  Google Scholar 

  5. R. D. Falcone, N. M. Correa, M. A. Biasutti and J. J. Silber, The use of acridine orange base (AOB) as molecular probe to characterize nonaqueous AOT reverse micelles J. Colloid Interface Sci. 2006 296 356–364.

    Article  CAS  PubMed  Google Scholar 

  6. R. D. Falcone, J. J. Silber, M. A. Biasutti and N. M. Correa, Binding of o-nitroaniline to nonaqueous AOT reverse micelles ARKIVOC 2011 vii, 369–379.

    Article  Google Scholar 

  7. A. Chakraborty, D. Seth, P. Setua and N. Sarkar, Dynamics of solvent and rotational relaxation of glycerol in the nanocavity of reverse micelles J. Phys. Chem. B 2006 110 5359–5366.

    Article  CAS  PubMed  Google Scholar 

  8. D. G. Hayes and E. Gulari, Ethylene glycol and fatty acid have a profound impact on the behavior of water-in-oil microemulsions formed by the surfactant Aerosol-OT Langmuir 1995 11 4695–4702.

    Article  CAS  Google Scholar 

  9. L. Mukherjee, N. Mitra, P. K. Bhattacharya and S. P. Moulik, Kinetics in microemulsion medium. 4. Alkaline fading of crystal violet in aqueous (H2O/Aerosol OT/Isooctane and H2O/Aerosol OT/decane) and nonaqueous (ethylene glycol/Aerosol OT/Isooctane) microemulsions Langmuir 1995 11 2866–2871.

    Article  CAS  Google Scholar 

  10. C. A. T. Laia and S. M. B. Costa, Rotational friction in AOT microemulsions: relevance of hydrodynamic and dielectric contributions to microviscosities probed by fluorescent bis[4-(dimethylamino)phenyl] squaraine Langmuir 2002 18 1494–1504.

    Article  CAS  Google Scholar 

  11. R. E. Riter, J. R. Kimmel, E. P. Undiks and N. E. Levinger, Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase J. Phys. Chem. B 1997 101 8292–8297.

    Article  CAS  Google Scholar 

  12. R. E. Riter, E. P. Undiks, J. R. Kimmel and N. E. Levinger, Formamide in reverse micelles: restricted environment effects on molecular motion J. Phys. Chem. B 1998 102 7931–7938.

    Article  CAS  Google Scholar 

  13. R. Lu, R. Zhu, R. Zhong and A. Yu, Locations of methanol in methanol-containing AOT reverse micelles revealed by photophysics of IR125 J. Photochem. Photobiol., A 2013 252 116–123.

    Article  CAS  Google Scholar 

  14. D. S. Venables, K. Huang and C. A. Schmuttenmaer, Effect of reverse micelle size on the librational band of confined water and methanol J. Phys. Chem. B 2001 105 9132–9138.

    Article  CAS  Google Scholar 

  15. P. Hazra and N. Sarkar, Solvation dynamics of Coumarin 490 in methanol and acetonitrile reverse micelles Phys. Chem. Chem. Phys. 2002 4 1040–1045.

    Article  CAS  Google Scholar 

  16. P. Hazra, D. Chakrabarty and N. Sarkar, Intramolecular charge transfer and solvation dynamics of coumarin 152 in Aerosol-OT, water-solubilizing reverse micelles, and polar organic solvent solubilizing reverse micelles Langmuir 2002 18 7872–7879.

    Article  CAS  Google Scholar 

  17. P. Hazra, D. Chakrabarty, A. Chakraborty and N. Sarkar, Effect of hydrogen bonding on intramolecular charge transfer in aqueous and non-aqueous reverse micelles J. Photochem. Photobiol., A 2004 167 23–30.

    Article  CAS  Google Scholar 

  18. T. Pradhan, H. A. R. Gazi, B. Guchhait and R. Biswas, Excited state intramolecular charge transfer reaction in non-aqueous reverse micelles: effects of solvent confinement and electrolyte concentration J. Chem. Sci. 2012 124 355–373.

    Article  CAS  Google Scholar 

  19. R. E. Riter, E. P. Undiks and N. E. Levinger, Impact of counterion on water motion in Aerosol OT reverse micelles J. Am. Chem. Soc. 1998 120 6062–6067.

    Article  CAS  Google Scholar 

  20. S. Basu, S. Mondal and D. Mandal, Proton transfer reactions in nanoscopic polar domains: 3-hydroxyflavone in AOT reverse micelles J. Chem. Phys. 2010 132 034701–034706.

    Article  PubMed  CAS  Google Scholar 

  21. D. Seth, D. Chakrabarty, A. Chakraborty and N. Sarkar, Study of energy transfer from 7-amino coumarin donors to rhodamine 6G acceptor in non-aqueous reverse micelles Chem. Phys. Lett. 2005 401 546–552.

    Article  CAS  Google Scholar 

  22. K. Holmberg, Organic reactions in microemulsions Curr. Opin. Colloid Interface Sci. 2003 8 187–196.

    Article  CAS  Google Scholar 

  23. R. V. Rariy, N. Bec, N. L. Klyachko, A. V. Levashov and C. Balny, Thermobarostability of a-chymotrypsin in reversed micelles of aerosol OT in octane solvated by water-glycerol mixtures Biotechnol. Bioeng. 1998 57 552–556.

    Article  CAS  PubMed  Google Scholar 

  24. R. D. Falcone, M. A. Biasutti, N. M. Correa, J. J. Silber, E. Lissi and E. Abuin, Effect of the addition of a nonaqueous polar solvent (glycerol) on enzymatic catalysis in reverse micelles. Hydrolysis of 2-naphthyl acetate by a-chymotrypsin Langmuir 2004 20 5732–5737.

    Article  CAS  PubMed  Google Scholar 

  25. M. A. Biasutti, E. B. Abuin, J. J. Silber, N. M. Correa and E. A. Lissi, Kinetics of reactions catalyzed by enzymes in solutions of surfactants Adv. Colloid Interface Sci. 2008 136 1–24.

    Article  CAS  PubMed  Google Scholar 

  26. M. P. Pileni, Reverse micelles as microreactors J. Phys. Chem. 1993 97 6961–6973.

    Article  CAS  Google Scholar 

  27. J. Eastoe, M. J. Hollamby and L. Hudson, Recent advances in nanoparticle synthesis with reversed micelles Adv. Colloid Interface Sci. 2006 128 5–15.

    Article  PubMed  CAS  Google Scholar 

  28. M. P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals Nat. Mater. 2003 2 145–150.

    Article  CAS  PubMed  Google Scholar 

  29. O. A. El Seoud, N. M. Correa and L. P. Novaki, Solubilization of pure and aqueous 1,2,3-propanetriol by reverse aggregates of aerosol-OT in isooctane probed by FTIR and 1H NMR spectroscopy Langmuir 2001 17 1847–1852.

    Article  CAS  Google Scholar 

  30. A. M. Durantini, R. D. Falcone, J. J. Silber and N. M. Correa, Effect of the constrained environment on the interactions between the surfactant and different polar solvents encapsulated within AOT reverse micelles ChemPhysChem 2009 10 2034–2040.

    Article  CAS  PubMed  Google Scholar 

  31. L. P. Novaki, N. M. Correa, J. J. Silber, O. A. El Seoud, FTIR and 1H NMR studies of the solubilization of pure and aqueous 1,2-ethanediol in the reverse aggregates of aerosol-OT Langmuir 2000 16 5573–5578.

    Article  CAS  Google Scholar 

  32. N. M. Correa and N. E. Levinger, What can you learn from a molecular probe? New insights on the behavior of C343 in homogeneous solutions and AOT reverse micelles J. Phys. Chem. B 2006 110 13050–13061.

    Article  CAS  PubMed  Google Scholar 

  33. V. Arcoleo, F. Aliotta, M. Goffredi, G. La Manna and V. T. Liveri, Study of AOT-stabilized microemulsions of formamide and n-methylformamide dispersed in n-heptane Mater. Sci. Eng., C 1997 5 47–53.

    Article  Google Scholar 

  34. S. Basu, S. Mondal and D. Mandal, 3,3’-Diethyloxacarbocyanine iodide: a new microviscosity probe for micelles and microemulsions Colloids Surf., A 2010 363 41–48.

    Article  CAS  Google Scholar 

  35. P. F. Aramendía, R. M. Negri, E. S. Román, Temperature dependence of fluorescence and photoisomerization in symmetric carbocyanines. Influence of medium viscosity and molecular structure J. Phys. Chem. 1994 98 3165–3173.

    Article  Google Scholar 

  36. L. Scaffardi, R. E. D. Paolo and R. Duchowicz, Simultaneous absorption and fluorescence analysis of the cyanine dye DOCI J. Photochem. Photobiol., A 1997 107 185–188.

    Article  CAS  Google Scholar 

  37. A. Datta, D. Mandal, S. K. Pal and K. Bhattacharyya, Photoisomerisation near a hydrophobic surface. Diethyloxadicarbocyanine iodide in a reverse micelle Chem. Phys. Lett. 1997 278 77–82.

    Article  CAS  Google Scholar 

  38. S. K. Pal, A. Datta, D. Mandal and K. Bhattacharyya, Photoisomerisation of diethyloxadicarbocyanine iodide in micelles Chem. Phys. Lett. 1998 288 793–798.

    Article  CAS  Google Scholar 

  39. S. P. Velsko, D. H. Waldeck and G. R. Fleming, Breakdown of Kramers theory description of photochemical isomerization and the possible involvement of frequency dependent friction J. Chem. Phys. 1983 78 249–258.

    Article  CAS  Google Scholar 

  40. S. Ghosh, S. Mandal, C. Banerjee, V. G. Rao and N. Sarkar, Photophysics of 3,3’-diethyloxadicarbocyanine iodide (DODCI) in ionic liquid micelle and binary mixtures of ionic liquids: effect of confinement and viscosity on photoisomerization rate J. Phys. Chem. B 2012 116 9482–9491.

    Article  CAS  PubMed  Google Scholar 

  41. P. Vaveliuk, L. B. Scaffardi and R. Duchowicz, Kinetic analysis of a double photoisomerization of the DTDCI cyanine dye J. Phys. Chem. 1996 100 11630–11635.

    Article  CAS  Google Scholar 

  42. A. F. Marks, A. K. Noah and M. R. V. Sahyun, Bond-length alternation in symmetrical cyanine dyes J. Photochem. Photobiol., A 2001 139 143–149.

    Article  CAS  Google Scholar 

  43. M. M. Awad, P. K. McCarthy and G. J. Blanchard, Photoisomerization of Cyanines. A comparative study of oxygen- and sulfur-containing species J. Phys. Chem. 1994 98 1454–1458.

    Article  CAS  Google Scholar 

  44. J. Rodríguez, D. Scherlis, D. Estrin, P. F. Aramendía and R. M. Negri, AM1 study of the ground and excited state potential energy surfaces of symmetric carbocyanines J. Phys. Chem. A 1997 101 6998–7006.

    Article  Google Scholar 

  45. M. Dandapat, D. Ghosh and D. Mandal, Torsional and reorientational motion of a symmetric carbocyanine in alcohols and in aqueous micelle solutions:3,3’-Diethylthiadicarbocyanine iodide J. Photochem. Photobiol., A 2013 276 41–49.

    Article  CAS  Google Scholar 

  46. M. M. G. Krishna and N. Periasamy, Location and orientation of DODCI in lipid bilayer membranes: effects of lipid chain length and unsaturation Biochim. Biophys. Acta 1999 1461 58–68.

    Article  CAS  PubMed  Google Scholar 

  47. M. Dandapat, S. Basu, D. Ghosh and D. Mandal, Photoisomerization and reorientational mobility of symmetric carbocyanines in AOT/alkane/polar solvent microemulsions Chem. Phys. Lett. 2014 608 113–119.

    Article  CAS  Google Scholar 

  48. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 3rd edn, 2006.

    Book  Google Scholar 

  49. D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen and M. D. Fayer, Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles J. Am. Chem. Soc. 2007 129 8122–8130.

    Article  CAS  PubMed  Google Scholar 

  50. M. J. Kamlet, J. L. M. Abboud, M. H. Abraham and R. W. Taft, Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, p*, a, and ß, and some methods for simplifying the generalized solvatochromic equation J. Org. Chem. 1983 48 2877–2887.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandapat, M., Mandal, D. Photoisomerization and reorientational dynamics of DTDCI in AOT/alkane reverse micelles containing non-aqueous polar liquids. Photochem Photobiol Sci 14, 378–386 (2015). https://doi.org/10.1039/c4pp00326h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00326h

Navigation