Skip to main content
Log in

A steady-state and time-resolved photophysical study of CdTe quantum dots in water

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The exciton generation and recombination dynamics in semiconductor nanocrystals are very sensitive to small variations in dimensions, shape and surface capping. In the present work CdTe quantum dots are synthesized in water using 3-mercaptopropionic acid and 1-thioglycerol as stabilizers. Nanocrystals with an average dimension of 4.0 ± 1.0 and 3.7 ± 0.9 nm were obtained, when 3-mercaptopropionic acid or 1-thioglycerol, respectively, was used as a capping agent. The steady-state characterization shows that the two types of colloids have different luminescence behavior. In order to investigate the electronic structure and the dynamics of the exciton state, a combined study in the time domain has been carried out by using fluorescence time-correlated single photon counting and femtosecond transient absorption techniques. The electron-hole radiative recombination follows the non-exponential decay law for both colloids, which results in different average decay time values (of the order of tens of nanoseconds) for the two samples. The data demonstrate that the process is slower for 1-thioglycerol-stabilized colloids. The ultrafast transient absorption measurements are performed at two different excitation wavelengths (at the band gap and at higher energies). The spectra are dominated in both types of samples by the negative band-gap bleaching signals although transient positive absorption bands due to the electrons in the conduction band are observable. The analysis of the signals is affected by the different interactions with the defect states, due to ligand capping capacities. In particular, the data indicate that in 1-thioglycerol-stabilized colloids the non-radiative recombination processes are kinetically more competitive than the radiative recombination. Therefore the comparison of the data obtained from the two samples is interpreted in terms of the effects of the capping agents on the electronic relaxation of the colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels Nano Lett. 2010 10 2735–2741.

    Article  CAS  PubMed  Google Scholar 

  2. S. Rhle, M. Shalom and A. Zaban, Quantum-dot-sensitized solar cells ChemPhysChem 2010 11 2290–2304.

    Article  CAS  Google Scholar 

  3. K. Jeong, R. Pensack and J. Asbury, Vibrational spectroscopy of electronic processes in emerging photovoltaic materials Acc. Chem. Res. 2013 46 1538–1547.

    Article  CAS  PubMed  Google Scholar 

  4. K. Knowles, M. Peterson, M. McPhail and E. Weiss, Exciton dissociation within quantum dot-organic complexes: Mechanisms, use as a probe of interfacial structure, and applications J. Phys. Chem. C 2013 117 10229–10243.

    Article  CAS  Google Scholar 

  5. K. Hyeon-Deuk and O. Prezhdo, Photoexcited electron and hole dynamics in semiconductor quantum dots: Phononinduced relaxation, dephasing, multiple exciton generation and recombination J. Phys.: Condens. Matter 2012 24 363201.

    Google Scholar 

  6. K. Tvrdy and P. Kamat, Substrate driven photochemistry of CdSe quantum dot films: Charge injection and irreversible transformations on oxide surfaces J. Phys. Chem. A 2009 113 3765–3772.

    Article  CAS  PubMed  Google Scholar 

  7. A. L. Rogach, Nanocrystalline CdTe and CdTe(S) particles: Wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications Mater. Sci. Eng., B 2000 69-70, 435–440.

    Article  Google Scholar 

  8. A. M. Smith, H. Duan, M. N. Rhyner, G. Ruana and S. Nie, A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots Phys. Chem. Chem. Phys. 2006 8 3895–3903.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Li, M. A. El-Sayed, The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution J. Phys. Chem. B 2001 105 8938–8943.

    Article  CAS  Google Scholar 

  10. S. Kaniyankandy, S. Rawalekar, S. Verma, D. K. Palit and H. N. Ghosh, Charge carrier dynamics in thiol capped CdTe quantum dots Phys. Chem. Chem. Phys. 2010 12 4210–4216.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Kobayashi, L. Pan and N. Tamai, Effect of size and capping reagents on biexciton Auger recombination dynamics of CdTe quantum dots J. Phys. Chem. C 2009 113 11783–11783.

    Article  CAS  Google Scholar 

  12. Z. Yuan, A. Zhang, Y. Cao, J. Yang, Y. Zhu and P. Yang, Effect of mercaptocarboxylic acids on luminescent properties of CdTe quantum dots J. Fluoresc. 2012 22 121–127.

    Article  CAS  PubMed  Google Scholar 

  13. H. Zhang, Z. Zhou, B. Yang and M. Gao, The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles J. Phys. Chem. B 2003 107 8–13.

    Article  CAS  Google Scholar 

  14. D. A. Hines and P. V. Kamat, Quantum dot surface chemistry: Ligand effects and electron transfer reactions J. Phys. Chem. C 2013 117 14418–14426.

    Article  CAS  Google Scholar 

  15. A. Iagatti, R. Flamini, M. Nocchetti and L. Latterini, Photoinduced formation of bithiophene radical cation via a hole-transfer process from CdS nanocrystals J. Phys. Chem. C 2013 117 23996–24002.

    Article  CAS  Google Scholar 

  16. M. Amelia, R. Flamini and L. Latterini, Recovery of CdS nanocrystal defects through conjugation with proteins Langmuir 2010 26 10129–10134.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Yan, G. Chen, P. G. van Patten, Ultrafast Exciton Dynamics in CdTe Nanocrystals and Core/Shell CdTe/CdS Nanocrystals J. Phys. Chem. C 2011 115 22717–22728.

    Article  CAS  Google Scholar 

  18. M. Sanz, M. A. Correa-Duarte, L. M. Liz-Marzan and A. Douhal, Femtosecond dynamics of CdTe quantum dots in water J. Photochem., Photobiol. 2008 196 51–58.

    Article  CAS  Google Scholar 

  19. S. Kaniyankandy, S. Rawalekar, S. Verma, D. K. Palit, H. N. Ghosh, Phys. Chem. Chem. Phys. 2010 12 4210–4216.

    Article  CAS  PubMed  Google Scholar 

  20. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 2002 106 7177–7185.

    Article  CAS  Google Scholar 

  21. S. K. Poznyak, N. P. Osipovich, A. Shavel, D. V. Talapin, M. Gao, A. Eychmüller and N. Gaponik, Thiol-capping of cdte nanocrystals: An alternative to organometallic synthetic routes J. Phys. Chem. B 2005 109 1094–1100.

    Article  CAS  PubMed  Google Scholar 

  22. K. K. Haldar, T. Sen, S. Mandal and A. Patra, Photophysical properties of Au-CdTe hybrid nanostructures of varying sizes and shapes ChemPhysChem 2012 13 3989–3996.

    Article  CAS  PubMed  Google Scholar 

  23. M. Di Donato, A. Iagatti, A. Lapini, P. Foggi, S. Cicchi, L. Lascialfari, S. Fedeli, S. Caprasecca and B. Mennucci, Combined Experimental and Theoretical Study of Efficient and Ultrafast Energy Transfer in a Molecular Dyad J. Phys. Chem. C 2014 118 23476–23486.

    Article  CAS  Google Scholar 

  24. L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli and P. Foggi, Excited States of Porphyrin Macrocycles J. Phys. Chem. A 2008 112 11044–11051.

    Article  CAS  PubMed  Google Scholar 

  25. P. L. Gentili, M. Mugnai, L. Bussotti, R. Righini, P. Foggi, S. Cicchi, G. Ghini, S. Viviani and A. Brandi, The ultrafast energy transfer process in naphtole-nitrobenzofurazan bichromophoric molecular systems: A study by femtosecond UV-vis pump-probe spectroscopy J. Photochem. Photobiol. A 2007 187 209–221.

    Article  CAS  Google Scholar 

  26. P. L. Gentili, L. Bussotti, R. Ruzziconi, S. Spizzichino and P. Foggi, Study of the Photobehavior of a Newly Synthesized Chiroptical Molecule: (E)-(Rp, Rp)-1,2-Bis4-methyl-[2] paracyclo[2](5,8) quinolinophan-2-yl ethene J. Phys. Chem. A 2009 113 14650–14656.

    Article  CAS  PubMed  Google Scholar 

  27. I. M. Bayanov, R. Danielius, P. Heinz and A. Seilmeier, Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system Opt. Commun. 1994 113 99–104.

    Article  CAS  Google Scholar 

  28. R. Danielius, A. Piskarskas, P. Di Trapani, A. Andreoni, C. Solcia and P. Foggi, Visible pulses of 100 fs and 100 μJ from an upconverted parametric generator Appl. Opt. 1996 35 5336–5339.

    Article  CAS  PubMed  Google Scholar 

  29. P. Tyagi and P. Kambhampati, False multiple exciton recombination and multiple exciton generation signals in semiconductor quantum dots arise from surface charge trapping J. Chem. Phys. 2011 134 094706.

    Article  PubMed  CAS  Google Scholar 

  30. J. A. McGuire, J. Joo, J. M. Pietryga, R. D. Schaller and V. I. Klimov, New aspects of carrier multiplication in semiconductor nanocrystals Acc. Chem. Res. 2008 41 1810–1819.

    Article  CAS  PubMed  Google Scholar 

  31. H. W. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik and M. C. Beard, Flowing versus static conditions for measuring multiple exciton generation in PbSe quantum dots J. Phys. Chem. C 2010 114 17486–17500.

    Article  CAS  Google Scholar 

  32. C. d. M. Donegá and R. Koole, Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots J. Phys. Chem. C 2009 113 6511–6520.

    Article  CAS  Google Scholar 

  33. W. W. Yu, L. Qu, W. Guo and X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals Chem. Mater. 2003 15 2854–2860.

    Article  CAS  Google Scholar 

  34. Z. J. Jiang and D. F. Kelley, Hot and relaxes electron transfer from the CdSe core and core/shell nanorods J. Phys. Chem. C 2011 115 4594–4602.

    Article  CAS  Google Scholar 

  35. M. Laferriére, R. E. Galian, V. Maurel and J. C. Scaiano, Non-linear effects in the quenching of fluorescent quantum dots by nitroxyl free radicals Chem. Commun. 2006 257–259.

    Google Scholar 

  36. S. Bhattacharyya, B. Paramanik, S. Kundu and A. Patra, Energy/hole transfer phenomena in hybrid α-sexithiophene (α-sth) nanoparticle-CdTe quantum-dot nanocomposites ChemPhysChem 2012 13 4155–4162.

    Article  CAS  PubMed  Google Scholar 

  37. W. Chen, X. Wang, X. Tu, D. Pei, Y. Zhao and X. Guo, Water-soluble protein-on spin-labeled quantum-dots conjugate Small 2008 4 759–764.

    Article  CAS  PubMed  Google Scholar 

  38. M. Berr, A. Vaneski, C. Mauser, S. Fischbach, A. Susha, A. Rogach, F. Jackel and J. Feldmann, Delayed photoelectron transfer in Pt-decorated CdS nanorods under hydrogen generation conditions Small 2012 8 291–297.

    Article  CAS  PubMed  Google Scholar 

  39. J. I. Saari, E. A. Dias, D. Reifsnyder, M. M. Krause, B. R. Walsh, C. B. Murray and P. Kambhampati, Ultrafast Electron Trapping at the Surface of Semiconductor Nanocrystals: Excitonic and Biexcitonic Processes J. Phys. Chem. B 2013 117 4412–4421.

    Article  CAS  PubMed  Google Scholar 

  40. V. I. Klimov, D. W. McBranch, C. Leatherdale and M. G. Bawendi, Electron and hole relaxation pathways in semiconductor quantum dots Phys. Rev. B: Condens. Matter 1999 60 13740–13749.

    Article  CAS  Google Scholar 

  41. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler and M. G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots Science 2000 390 314–317.

    Article  Google Scholar 

  42. V. I. Klimov, Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals J. Phys. Chem. B 2000 104 6112–6123.

    Article  CAS  Google Scholar 

  43. M. T. Trinh, A. J. Houtepen, J. M. Schins, T. Hanrath, J. Piris, W. Knulst, A. P. L. M. Goossens and L. D. A. Siebbeles, In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals Nano Lett. 2008 8 1713–1718.

    Article  PubMed  Google Scholar 

  44. L. Padilha, A. Neves, C. Cesar and L. Barbosa, Recombination processes in CdTe quantum-dot-doped glasses Appl. Phys. Lett. 2004 85 3256–3258.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Foggi or Loredana Latterini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iagatti, A., Tarpani, L., Fiacchi, E. et al. A steady-state and time-resolved photophysical study of CdTe quantum dots in water. Photochem Photobiol Sci 14, 397–406 (2015). https://doi.org/10.1039/c4pp00300d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00300d

Navigation