Skip to main content
Log in

A caged substrate peptide for matrix metalloproteinases

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Based on the widely applied fluorogenic peptide FS-6 (Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2; Mca = methoxycoumarin-4-acetyl; Dpa = N-3-(2,4-dinitrophenyl)l-α,β-diaminopropionyl) a caged substrate peptide Ac-Lys-Pro-Leu-Gly-Lys*-Lys-Ala-Arg-NH2 (*, position of the cage group) for matrix metalloproteinases was synthesized and characterized. The synthesis implies the modification of a carbamidated lysine side-chain amine with a photocleavable 2-nitrobenzyl group. Mass spectrometry upon UV irradiation demonstrated the complete photolytic cleavage of the protecting group. Time-resolved laser-flash photolysis at 355 nm in combination with transient absorption spectroscopy determined the biphasic decomposition with τa = 171 ± 3 ms (79%) and τb = 2.9 ± 0.2 ms (21%) at pH 6.0 of the photo induced release of the 2-nitrobenzyl group. The recombinantly expressed catalytic domain of human membrane type I matrix metalloproteinase (MT1-MMP or MMP-14) was used to determine the hydrolysis efficiency of the caged peptide before and after photolysis. It turned out that the cage group sufficiently shields the peptide from peptidase activity, which can be thus controlled by UV light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tatsu, Y. Shigeri, S. Sogabe, N. Yumoto and S. Yoshikawa, Solid-Phase Synthesis of Caged Peptides Using Tyrosine Modified with a Photocleavable Protecting Group: Application to the Synthesis of Caged Neuropeptide Y Biochem. Biophys. Res. Commun. 1996 227 688–693.

    Article  CAS  PubMed  Google Scholar 

  2. S. R. Adams and R. Y. Tsien, Controlling Cell Chemistry with Caged Compounds Annu. Rev. Physiol. 1993 55 755–784.

    Article  CAS  PubMed  Google Scholar 

  3. A. P. Pelliccioli and J. Wirz, Photoremovable protecting groups: reaction mechanisms and applications Photochem. Photobiol. Sci. 2002 1 441–458.

    Article  PubMed  Google Scholar 

  4. G. C. R. Ellis-Davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology Nat. Methods 2007 4 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H. T. Yu, J. B. Li, D. D. Wu, Z. J. Qiu and Y. Zhang, Chemistry and biological applications of photo-labile organic molecules Chem. Soc. Rev. 2010 39 464–473.

    Article  PubMed  Google Scholar 

  6. S. Abbruzzetti, E. Grandi, C. Viappiani, S. Bologna, B. Campanini, S. Raboni, S. Bettati and A. Mozzarelli, Kinetics of acid-induced spectral changes in the GFPmut2 chromophore J. Am. Chem. Soc. 2005 127 626–635.

    Article  CAS  PubMed  Google Scholar 

  7. C. Tallant, A. Marrero, F. X. Gomis-Rüth, Matrix metalloproteinases: Fold and function of their catalytic domains Biochim. Biophys. Acta 2010 1803 20–28.

    Article  CAS  PubMed  Google Scholar 

  8. G. Murphy and H. Nagase, Progress in matrix metalloproteinase research Mol. Aspects Med. 2008 29 290–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Visse and H. Nagase, Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry Circ. Res. 2003 92 827–839.

    Article  CAS  PubMed  Google Scholar 

  10. M. Grossman, B. Born, M. Heyden, D. Tworowski, G. B. Fields, I. Sagi and M. Havenith, Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site Nat. Struct. Mol. Biol. 2011 18 1102–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. Nagase and G. B. Fields, Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides Biopolymers 1996 40 399–416.

    Article  CAS  PubMed  Google Scholar 

  12. M. Heyden and M. Havenith, Combining THz spectroscopy and MD simulations to study protein-hydration coupling Methods 2010 52 74–83.

    Article  CAS  PubMed  Google Scholar 

  13. S. J. Kim, B. Born, M. Havenith and M. Gruebele, Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy Angew. Chem., Int. Ed. 2008 47 6486–6489.

    Article  CAS  Google Scholar 

  14. A. Jabaiah and P. S. Daugherty, Directed Evolution of Protease Beacons that Enable Sensitive Detection of Endogenous MT1-MMP Activity in Tumor Cell Lines Chem. Biol. 2011 18 392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Nagase, R. Visse and G. Murphy, Structure and function of matrix metalloproteinases and TIMPs Cardiovasc. Res. 2006 69 562–573.

    Article  CAS  PubMed  Google Scholar 

  16. V. Pelmenschikov and P. E. M. Siegbahn, Catalytic mechanism of matrix metalloproteinases: Two-layered ONIOM study Inorg. Chem. 2002 41 5659–5666.

    Article  CAS  PubMed  Google Scholar 

  17. H. Ogata, E. Decaneto, M. Grossman, M. Havenith, I. Sagi, W. Lubitz and M. Knipp, Crystalization and preliminary X-ray crystallographic analysis of the catalytic domain of membrane type 1 matrix metalloproteinase Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2014 70 232–235.

    Article  CAS  Google Scholar 

  18. G. B. Fields, Using Fluorogenic Peptide Substrates to Assay Matrix Metalloproteinases Methods Mol. Biol. 2000 151 495–518.

    Google Scholar 

  19. R. C. Wahl, The calculation of initial velocity from product progress curves when [S]<<Km Anal. Biochem. 1994 383–384.

    Google Scholar 

  20. U. Neumann, H. Kubota, K. Frei, V. Ganu and D. Leppert, Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme Anal. Biochem. 2004 328 166–173.

    Article  CAS  PubMed  Google Scholar 

  21. S. Abbruzzetti, S. Sottini, C. Viappiani and J. E. T. Corrie, Kinetics of proton release after flash photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) in aqueous solution J. Am. Chem. Soc. 2005 127 9865–9874.

    Article  CAS  PubMed  Google Scholar 

  22. S. Abbruzzetti, E. Crema, L. Masino, A. Vecli, C. Viappiani, J. R. Small, L. J. Libertini and E. W. Small, Fast events in protein folding: structural volume changes accompanying the early events in the N → I transition of apomyoglobin induced by ultrafast pH jump Biophys. J. 2000 78 405–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. I. Schechter and A. Berger, On the size of the active site in proteases. I. Papain Biochem. Biophys. Res. Commun. 1967 27 157–162.

    Article  CAS  PubMed  Google Scholar 

  24. C. M. Overall and O. Kleifeld, Towards third generation matrix metalloproteinase inhibitors for cancer therapy Br. J. Cancer 2006 94 941–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Matter and M. Schudok, Recent advances in the design of matrix metalloprotease inhibitors Curr. Opin. Drug Discovery Dev. 2004 7 513–535.

    CAS  Google Scholar 

  26. J. M. Chen, F. C. Nelson, J. I. Levin, D. Mobilio, F. J. Moy, R. Nilakantan, A. Zask and R. Powers, Structure-Based Design of a Novel, Potent, and Selective Inhibitor for MMP-13 Utilizing NMR Spectroscopy and Computer-Aided Molecular Design J. Am. Chem. Soc. 2000 122 9648–9654.

    Article  CAS  Google Scholar 

  27. S. P. Gupta, and V. M. Patil, Specificity of Binding with Matrix Metalloproteinases, Matrix Metalloproteinase Inhibitors, Springer, 2012.

    Book  Google Scholar 

  28. C. Fernandez-Catalan, W. Bode, R. Huber, D. Turk, J. J. Calvete, A. Lichte, H. Tschesche and K. Maskos, Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor EMBO J. 1998 18 5238–5248.

    Article  Google Scholar 

  29. I. Bertini, I. Calderone, M. Fragai, C. Luchinat, M. Maletta and K. J. Yeo, Snapshots of the Reaction Mechanism of Matrix Metalloproteinases Angew. Chem., Int. Ed. 2006 45 7952–7955.

    Article  CAS  Google Scholar 

  30. J. Berman, M. Green, E. Sugg, R. Anderegg, D. S. Millington, D. L. Norwood, J. Mcgeehan and J. Wiseman, Rapid Optimization of Enzyme Substrates Using Defined Substrate Mixtures J. Biol. Chem. 1992 267 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Tatsu, Y. Shigeri, A. Ishida, K. Isamu, H. Fujisawa and N. Yumoto, Synthesis of caged peptides using caged lysine: Application to the synthesis of caged AIP, a highly specific inhibitor of calmodulin-dependent protein kinase II Bioorg. Med. Chem. Lett. 1999 9 1093–1096.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Shigeri, Y. Tatsu and N. Yumoto, Synthesis and application of caged peptides and proteins Pharmacol. Ther. 2001 91 85–92.

    Article  CAS  PubMed  Google Scholar 

  33. S. Walbert, W. Pfleiderer and U. E. Steiner, Photolabile Protecting Groups for Nucleosides: Mechanistic Studies of the 2-(2-Nitrophenyl)ethyl Group Helv. Chim. Acta 2001 84 1601–1611.

    Article  CAS  Google Scholar 

  34. R. A. McClelland and S. Steenken, Pronounced solvent effect on the absorption spectra of the photochemically produced 2,4-dinitrobenzyl carbanion Can. J. Chem. 1987 65 353–356.

    Article  CAS  Google Scholar 

  35. S. J. Atherton and B. B. Craig, Laser photolysis of 2,6-dinitrotoluene in solution Chem. Phys. Lett. 1986 127 7–12.

    Article  CAS  Google Scholar 

  36. M. Schwörer and J. Wirz, Photochemical Reaction Mechanisms of 2-Nitrobenzyl Compounds in Solution, I. 2-Nitrotoluene: Thermodynamic and Kinetic Parameters of the aci-Nitro Tautomer Helv. Chim. Acta 2001 84 1441–1458.

    Article  Google Scholar 

  37. M. Gutman and E. Nachliel, The dynamic aspects of proton transfer processes Biochim. Biophys. Acta 1990 1015 391–414.

    Article  CAS  Google Scholar 

  38. M. Carcelli, P. Pelagatti and C. Viappiani, Determination of the pKa of the Aci-Nitro Intermediate in o-Nitrobenzyl Systems Isr. J. Chem. 1998 38 213–221.

    Article  CAS  Google Scholar 

  39. S. Abbruzzetti, M. Carcelli, D. Rogolino and C. Viappiani, Deprotonation yields, pKa, and aci-nitro decay rates in some substituted o-nitrobenzaldehydes Photochem. Photobiol. Sci. 2003 2 796–800.

    Article  CAS  PubMed  Google Scholar 

  40. A. Barth and J. E. T. Corrie, Characterization of a new caged proton capable of inducing large pH jumps Biophys. J. 2002 83 2864–2871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. E. T. Corrie, T. Furuta, R. Givens, A. L. Yousef, and M. Goeldner, Photoremovable Protecting Groups Used for the Caging of Biomolecules, in Dynamic Studies in Biology, Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 1–94.

    Google Scholar 

  42. M. Caplow, Kinetics of carbamate formation and breakdown J. Am. Chem. Soc. 1968 90 6795–6803.

    Article  CAS  Google Scholar 

  43. J. E. Corrie, A. DeSantis, Y. Katayama, K. Khodakhah, J. B. Messenger, D. C. Ogden and D. R. Trentham, Postsynaptic activation at the squid giant synapse by photolytic release of L-glutamate from a ‘caged’ L-glutamate J. Physiol. 1993 465 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Schwörer and J. Wirz, Photochemical reaction mechanism of 2-nitrobenzyl compounds in solution. 1. 2-Nitrotoluene: Thermodynamic and kinetic parameters of the aci-nitro tautomer Helv. Chim. Acta 2001 84 551–606.

    Article  Google Scholar 

  45. Y. V. Il’ichev and J. Wirz, Rearrangements of 2-Nitrobenzyl Compounds. 1. Potential Energy Surface of 2-Nitrotoluene and Its Isomers Explored with ab Initio and Density Functional Theory Methods J. Phys. Chem. A 2000 104 7856–7870.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Decaneto or Cristiano Viappiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decaneto, E., Abbruzzetti, S., Heise, I. et al. A caged substrate peptide for matrix metalloproteinases. Photochem Photobiol Sci 14, 300–307 (2015). https://doi.org/10.1039/c4pp00297k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00297k

Navigation