Skip to main content
Log in

Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A simplified mathematical model to describe the oxidative degradation of glyphosate employing hydrogen peroxide and UV radiation was developed based on a sequence of predominant reactions. The kinetics obtained include all the required significant variables. Consequently, not only were concentration dependencies examined but also the influence of a detailed spatial description of the radiation field was included as part of the modeling. The kinetic parameters were obtained by comparing the simulation concentrations obtained with the model with the experimental values gathered in the laboratory reactor, employing a multiparameter non-linear regression analysis. In addition, the potential of the H2O2/UV process for treating water polluted with a commercial formulation, which was the glyphosate monoisopropylamine salt plus some additives, was studied. The glyphosate and TOC (total organic carbon) conversions reached were close to 80% and 70% respectively at 12 h (0.66 h actual exposure to radiation). It has been shown that a simple reaction scheme for the degradation of glyphosate acid and glyphosate isopropylamine salt from a commercial formulation can represent with good accuracy the performance of both reacting systems. In addition, the degradation procedure allowed a clear reduction of the toxicity of the glyphosate in the formulation over Vibrio fischeri at the end of the experiments. For this reason, reaching complete mineralization might not be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO, FAOESTAT. Internet site: http://faostat.fao.org/site/567/default.aspx#ancor (access 3 September 2012).

  2. R. Binimelis, W. Pengue and I. Monterroso, “Transgenic treadmilld: Responses to the emergence and spread of glyphosate-resistant johnsongrass in Argentina Geoforum 2009 40 623–633.

    Article  Google Scholar 

  3. A. Araújo, R. Monteiro and R. Abarkeli, Effect of glyphosate on the microbial activity of two Brazilian soils Chemosphere 2003 52 799–804.

    Article  PubMed  CAS  Google Scholar 

  4. W. Battaglin, D. Kolpin, E. Scribner, K. Kuivila and M. Sandstrom, Glyphosate, other herbicides, and transformation products in midwestern streams J. Am. Water Resour. Assoc. 2002 41, 2, 323–332.

    Article  Google Scholar 

  5. I. Fomsgaard, N. Spliid and G. Felding, Leaching of pesticides through normal-tillage and low-tillage soil—a lysimeter study: II Glyphosate J. Environ. Sci. Health, Part B 2003 B38, 19–35.

    Article  CAS  Google Scholar 

  6. F. Veiga, J. Zapata, M. Fernandez Marcos and E. Alvarez, Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, North-west Spain Sci. Total Environ. 2001 271 135–144.

    Article  CAS  PubMed  Google Scholar 

  7. D. Thompson, B. Wojtaszek, B. Staznik, D. Chartband and G. Stephenson, Chemical and biomonitoring to assess potential acute effects of VisonR herbicide on native amphibian larvae in forest wetlands Environ. Toxicol. Chem. 2004 23 843–849.

    Article  CAS  PubMed  Google Scholar 

  8. C. Skark, N. Zullei-Seibert, U. Schottler and C. Schlett, The occurrence of glyphosate in surface water Int. J. Environ. Anal. Chem. 1998 70 93–104.

    Article  CAS  Google Scholar 

  9. D. Kolpin, E. Michael Thurman, E. Lee, M. Meyer, E. Furlong and S. Glassmeyer, Urban contributions of glyphosate and its degradate AMPA to streams in the United States Sci. Total Environ. 2006 354 191–197.

    Article  CAS  PubMed  Google Scholar 

  10. A. D. Baylis, Why glyphosate is a global herbicide: strengths, weaknesses and prospects Pest Manage. Sci. 2000 56 299–308.

    Article  CAS  Google Scholar 

  11. C. Shifu and L. Yunzhang, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst Chemosphere 2007 67 1010–1017.

    Article  CAS  Google Scholar 

  12. P. L. Huston and J. J. Pignatello, Degradation of selected pesticides active ingredients and commercial formulations in water by the photo-assisted Fenton reactions Water Res. 1999 33 1238–1246.

    Article  CAS  Google Scholar 

  13. S. Aquino Neto and A. R. Andrade, Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect Electrochim. Acta 2009 54 2039–2045.

    Article  CAS  Google Scholar 

  14. M. R. Assalin, S. G. de Moraes, S. C. N. Queiroz, V. L. Ferracini and N. Duran, Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis J. Environ. Sci. Health, Part B 2010 45 89–94.

    Article  CAS  Google Scholar 

  15. Y. Chen, F. Wu, Y. Lin, N. Deng, N. Bazhin and E. Glebov, Photodegradation of glyphosate in the ferrioxalate system J. Hazard. Mater. 2007 148 360–365.

    Article  CAS  PubMed  Google Scholar 

  16. G. R. Mangat Echavia, F. Matzusawa and N. Negishi, Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel Chemosphere 2009 76 595–600.

    Article  CAS  Google Scholar 

  17. M. Muneer and C. Boxall, Photocatalyzed degradation of a pesticide derivative glyphosate in aqueous suspensions of titanium dioxide Int. J. Photoenergy 2008, 197346.

    Google Scholar 

  18. W. Xue, G. Zhang, X. Xu, X. Yang, C. Liu and Y. Xu, Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate Chem. Eng. J. 2011 167 397–402.

    Article  CAS  Google Scholar 

  19. A. Manassero, C. Passalia, A. C. Negro, A. E. Cassano and C. S. Zalazar, Glyphosate degradation in water employing the H2O2/UV process Water Res. 2010 44 3875–3882.

    Article  CAS  PubMed  Google Scholar 

  20. H. Ikehata, M. Gama El-Din, Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review J. Environ. Sci. Eng. 2006 5 81–135.

    Article  CAS  Google Scholar 

  21. A. Allen, C. Hochanadel, J. Ghormley and T. Davis, Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation J. Phys. Chem. 1952 56 575–586.

    Article  Google Scholar 

  22. Y. Zhu, F. Zhang, C. Tong and W. Liu, Determination of glyphosate by ion chromatography J. Chromatogr., A 1999 850 297–301.

    Article  CAS  Google Scholar 

  23. ASTM Standard D5660-96, Standard Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium, ASTM International, West Conshohocken, PA, 2004, 10.1520/D5660-96R04, http://www.astm.org.

    Google Scholar 

  24. C. S. Zalazar, M. D. Labas, J. R. Brandi and A. E. Cassano, Dichloroacetic acid degradation employing hydrogen peroxide and UV radiation Chemosphere 2007 66 808–815.

    Article  CAS  PubMed  Google Scholar 

  25. H. Kuhn, S. Braslavsky and R. Schmidt, Chemical Actinometry (IUPAC Technical Report) Pure Appl. Chem. 2004 76 2105–2146.

    Article  CAS  Google Scholar 

  26. S. Murov, I. Carmichael, and G. Hug, Handbook of photochemistry, Marcel Dekker, New York, 2nd edn, 1993.

    Google Scholar 

  27. C. S. Zalazar, M. D. Labas, C. A. Martín, R. J. Brandi, O. M. Alfano and A. E. Cassano, The extended use of actinometry in the interpretation of photochemical reaction engineering data Chem. Eng. J. 2005 109 67–81.

    Article  CAS  Google Scholar 

  28. C. S. Zalazar, M. E. Lovato, M. D. Labas, R. J. Brandi, O. M. Alfano and A. E. Cassano, Intrinsic kinetics of the oxidative reaction of dichloroacetic acid employing hydrogen peroxide and ultraviolet radiation Chem. Eng. Sci. 2007 62 5840–5853.

    Article  CAS  Google Scholar 

  29. C. Liao and M. Gurol, Chemical oxidation by photolytic decomposition of hydrogen peroxide Environ. Sci. Technol. 1995 29 3007–3014.

    Article  CAS  PubMed  Google Scholar 

  30. M. Stefan, A. Hoy and J. Bolton, Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide Environ. Sci. Technol. 1996 30 2382–2390.

    Article  CAS  Google Scholar 

  31. P. Kralik, H. Kusic, N. Koprivanac, A. Loncaric Bonzic, Degradation of chlorinated hydrocarbons by UV/H2O2: The application of experimental design and kinetic modeling approach Chem. Eng. J. 2010 158 154–166.

    Article  CAS  Google Scholar 

  32. P. Kusic, D. Juretic, N. Koprivanac, V. Marin, A. Loncaric Bonzic, Photooxidation processes for an azo dye in aqueous media: Modeling of degradation kinetic and ecological parameters evaluation J. Hazard. Mater. 2011 185 1558–1568.

    Article  CAS  PubMed  Google Scholar 

  33. J. Crittenden, S. Hu, D. Hand and S. Green, A kinetic model for H2O2/UV process in a completely mixed batch reactor Water Res. 1999 33 2315–2328.

    Article  CAS  Google Scholar 

  34. G. Buxton, C. Greenstock, W. Helman and A. Ross, Critical review of data constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solutions J. Phys. Chem. Ref. Data 1988 17 513–886.

    Article  CAS  Google Scholar 

  35. K. Schested, O. Rasmussen and H. Fricke, Rate constants of OH with HO2, O−2 and H2O+2 from hydrogen peroxide formation in pulse-irradiated oxygenated water J. Phys. Chem. 1968 72 626–631.

    Article  Google Scholar 

  36. W. Glaze, Y. Lay and J. Kang, Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation Ind. Eng. Chem. Res. 1995 34 2314–2323.

    Article  CAS  Google Scholar 

  37. D. T. Sawyer and J. S. Valentine, How super is superoxide? Acc. Chem. Res. 1981 1, 12, 393–400.

    Article  Google Scholar 

  38. B. H. Bielski and D. E. Cabelli, Highlights of Current Research Involving Superoxide and Perhydroxyl Radicals in Aqueous Solutions Int. J. Radiat. Biol. 1991 59, 2, 291–319.

    Article  CAS  PubMed  Google Scholar 

  39. C. von Sonntag, H-P Schuchmann, Help of Radiation-Chemical Methods Angew. Chem., Int. ed. Engl. 1991 30, 10, 1229–1253.

    Article  Google Scholar 

  40. C. von Sonntag, P. Dowideit, X. Fang, R. Mertens, X. Pan, M. N. Schuchmann, H.-P. Schuchmann, The fate of peroxyl radicals in aqueous solution Water Sci. Technol. 1997 35 9–15.

    Article  Google Scholar 

  41. M. Mariani, R. Brandi, A. Cassano and C. Zalazar, A kinetic model for the degradation of dichloroacetic acid and formic acid in water employing the H2O2/UV process Chem. Eng. J. 2013 225 423–432.

    Article  CAS  Google Scholar 

  42. M. Lescano, C. Zalazar, A. Cassano and R. Brandi, Kinetic modelling of arsenic (III) oxidation in water employing the UV/H2O2Chem. Eng. J. 2012 211–212, 360–368.

    Article  CAS  Google Scholar 

  43. O. Alfano, R. Brandi and A. Cassano, Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation Chem. Eng. J. 2001 3765 1–10.

    Google Scholar 

  44. K. Levenberg, A method for the solution of certain problems in least squares Q. Appl. Math. 1944 2 164–168.

    Article  Google Scholar 

  45. D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters SIAM J. Appl. Math. 1963 11 431–441.

    Article  Google Scholar 

  46. J. Baxendale and J. Wilson, The photolysis of hydrogen peroxide at high light intensities Trans. Faraday Soc. 1956 53 344–356.

    Article  Google Scholar 

  47. W. R. Haag and D. Yao, Rate constants for Reaction of hydroxyl radicals with several drinking water contaminants Environ. Sci. Technol. 1992 26 1005–1013.

    Article  CAS  Google Scholar 

  48. W. Song, V. Ravindran and M. Pirbazari, Process optimization using a kinetic model for the ultraviolet radiation-hydrogen peroxide decomposition of natural and synthetic organic compounds in groundwater Chem. Eng. Sci. 2008 63 3249–3270.

    Article  CAS  Google Scholar 

  49. F. García Einschlag, J. López, C. Capparelli, A. Braun and E. Oliveros, Evaluation of the efficiency of photodegradation of nitroaromatics applying the UV/H2O2 technique Environ. Sci. Technol. 2002 36 3936–3944.

    Article  PubMed  CAS  Google Scholar 

  50. M. Hernando, S. de Vettori, M. Martínez Bueno, A. Fernández Alba, Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture Chemosphere 2007 68, 4, 724–730.

    Article  CAS  PubMed  Google Scholar 

  51. C. Junges, E. Vidal, A. Attademo, M. Mariani, L. Cardell, A. Negro, A. Cassano, P. Peltzer, R. Lajmanovich and C. Zalazar, Effectiveness evaluation of glyphosate oxidation employing the H2O2/UV process: Toxicity assays with Vibrio fischeri and Rhinella arenarum tadpoles J. Environ. Sci. Health, Part B 2013 48 163–170.

    Article  CAS  Google Scholar 

  52. W. Xue, G. Zhang, X. Xu, X. Yang, C. Liu and Y. Xu, Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate Chem. Eng. J. 2011 167 397–402.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Zalazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, E., Negro, A., Cassano, A. et al. Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process. Photochem Photobiol Sci 14, 366–377 (2015). https://doi.org/10.1039/c4pp00248b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00248b

Navigation