Skip to main content
Log in

Non-radiative deactivation in phenol–pyridine complex: theoretical study

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Minimum energy structures of the ground and lowest excited states of the phenol (PhOH)–pyridine (Py) hydrogen-bonded complex in the gas phase were determined by ab initio calculations. Photophysical and photochemical features of the complex under Cs symmetry (planar (Pl) and perpendicular (Pe) conformers) and without any symmetry constraints (unconstrained (Un) conformer) were studied with respect to nonradiative decay processes to the ground state. The mechanism involves internal conversion (IC) and intersystem crossing (ISC) along the O–H bond elongation coordinate, where a coupled electron/proton-transfer reaction plays a decisive role in the photophysics of this complex. For the Pl conformer, nonradiative decay proceeds from a locally excited 1pp*(LE) minimum over a conical intersection barrier (0.12 eV) to a charge-transfer (CT) minimum, which corresponds to a hydrogen-bonded PhO??HPy? biradical. Near this second minimum, a barrierless conical intersection 1A’(pp*(CT))–S0 funnels the electron population from the CT to the ground S0 state, completing the nonradiative deactivation. Calculations performed for the Pe and Un conformers confirmed that the same radiationless mechanism proceeds with no 1pp*(LE)/1pp*(CT) conical intersection near the Franck–Condon region. Furthermore, the population of the lowest triplet states via ISC and their contribution to the photophysics of PhOH–Py complex have been discussed. These findings appear to suggest that there is no single dominant path, but rather many distinct paths involving different quenching mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen Bonding and Transfer in the Excited State, ed. K.-L. Han and G.-J. Zhao, Wiley, West Sussex, UK, 2011.

    Google Scholar 

  2. G. J. Zhao and K. L. Han, J. Phys. Chem. A, 2007, 111, 2469–2474.

    Article  CAS  PubMed  Google Scholar 

  3. G. J. Zhao and K. L. Han, Acc. Chem. Res., 2012, 45, 404.

    Article  CAS  PubMed  Google Scholar 

  4. A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys., 2004, 6, 2763–2771.

    Article  CAS  Google Scholar 

  5. A. L. Sobolewski, W. Domcke and C. Hattig, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 17903–17906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Yamazaki and T. Taketsugu, Phys. Chem. Chem. Phys., 2012, 14, 8866–8877.

    Article  CAS  PubMed  Google Scholar 

  7. S. Perun, A. L. Sobolewski and W. Domcke, J. Phys. Chem. A, 2006, 110, 9031–9038.

    Article  CAS  PubMed  Google Scholar 

  8. J. P. Gobbo, V. Saurí, D. Roca-Sanjuán, L. Serrano-Andrés, M. Merchán and A. C. Borin, J. Phys. Chem. B, 2012, 116, 4089–4097.

    Article  CAS  PubMed  Google Scholar 

  9. G. Groenhof, M. Boggio-Pasqua, M. Goette, H. Grubmüller and M. A. Robb, J. Am. Chem. Soc., 2007, 129, 6812–6819.

    Article  CAS  PubMed  Google Scholar 

  10. P. R. L. Markwick and N. L. Doltsinis, J. Chem. Phys., 2007, 126, 175102.

    Article  PubMed  CAS  Google Scholar 

  11. M. Barbatti, A. J. A. Aquino, J. J. Szymczak, D. Nachtigallová, P. Hobza and H. Lischka, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 21453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C. E. Crespo-Hernandez, B. Cohen, J. Hare and B. Kohler, Chem. Rev., 2004, 104, 1977.

    Article  CAS  PubMed  Google Scholar 

  13. T. Förster, Elektrochem., 1950, 54, 531.

    Google Scholar 

  14. L. G. Arnaut and S. J. Formosinho, J. Photochem. Photobiol., A, 1993, 75, 1.

    Article  CAS  Google Scholar 

  15. H. Tanaka and K. Nishimoto, J. Phys. Chem., 1984, 88, 1052.

    Article  CAS  Google Scholar 

  16. N. Mataga, Pure Appl. Chem., 1984, 56, 1255.

    Article  CAS  Google Scholar 

  17. N. Ideka, T. Okada and N. Mataga, Chem. Phys. Lett., 1980, 69, 251.

    Article  Google Scholar 

  18. M. M. Martin, N. Ideka, T. Okada and N. Mataga, J. Phys. Chem., 1982, 86, 4148.

    Article  CAS  Google Scholar 

  19. M. M. Martin, H. Miyasaka, A. Karen and N. Mataga, J. Phys. Chem., 1985, 89, 182–185.

    Article  CAS  Google Scholar 

  20. N. Ideka, H. Miyasaka, T. Okada and N. Mataga, J. Am. Chem. Soc., 1983, 105, 5206–5211.

    Article  Google Scholar 

  21. H. Miyasaka, A. Tabata, S. Ojima, N. Ideka and N. Mataga, J. Phys. Chem., 1993, 97, 8222.

    Article  CAS  Google Scholar 

  22. N. Mataga and H. Miyasaka, Adv. Chem. Phys., 1999, 107, 431–496.

    CAS  Google Scholar 

  23. J. Waluk, Acc. Chem. Res., 2003, 36, 832.

    Article  CAS  PubMed  Google Scholar 

  24. A. L. Sobolewski and W. Domcke, J. Phys. Chem. A, 2007, 111, 11725.

    Article  CAS  PubMed  Google Scholar 

  25. M. F. Rode and A. L. Sobolewski, Chem. Phys., 2008, 347, 413.

    Article  CAS  Google Scholar 

  26. L. M. Frutos, A. Markmann, A. L. Sobolewski and W. Domcke, J. Phys. Chem. B, 2007, 111, 6110.

    Article  CAS  PubMed  Google Scholar 

  27. Z. Lan, L. M. Frutos, A. L. Sobolewski and W. Domcke, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 12707–12712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett., 1989, 162, 165.

    Article  CAS  Google Scholar 

  29. F. Weigend, M. Haser, H. Patzelt and R. Ahlrichs, Chem. Phys. Lett., 1998, 294, 143.

    Article  CAS  Google Scholar 

  30. C. Hätig, J. Chem. Phys., 2003, 118, 7751.

    Article  CAS  Google Scholar 

  31. A. Köhn, C. Hätig, J. Chem. Phys., 2003, 119, 5021.

    Article  CAS  Google Scholar 

  32. V. Poterya, L. Šištík, P. Slavícek, M. Fárník, Phys. Chem. Chem. Phys., 2012, 14, 8936.

    Article  CAS  PubMed  Google Scholar 

  33. Z. Lan, W. Domcke, V. Vallet, A. L. Sobolewski and S. Mahapatra, J. Chem. Phys., 2005, 122, 224315.

    Article  PubMed  CAS  Google Scholar 

  34. R. N. Dixon, T. A. A. Oliver and M. N. R. Ashfold, J. Chem. Phys., 2011, 134, 194303.

    Article  PubMed  CAS  Google Scholar 

  35. A. L. Sobolewski and W. Domcke, J. Phys. Chem. A, 2001, 105, 9275.

    Article  CAS  Google Scholar 

  36. K. Daigoku, S. Ishiuchi, M. Sakai, M. Fujii and K. Hashimoto, J. Chem. Phys., 2003, 119, 5149.

    Article  CAS  Google Scholar 

  37. M. Merchán, L. Serrano-Andrés, M. A. Robb, L. Blancafort L, J. Am. Chem. Soc., 2005, 127, 1820–1825.

    Article  PubMed  CAS  Google Scholar 

  38. T. Climent, R. González-Luque, M. Merchán, L. Serrano-Andrés, Chem. Phys. Lett., 2007, 441, 327–331.

    Article  CAS  Google Scholar 

  39. J. J. Serrano-Pérez, R. González-Luque, M. Merchán, L. Serrano-Andrés, J. Phys. Chem. B, 2007, 111, 11880–11883.

    Article  PubMed  CAS  Google Scholar 

  40. G. A. Pino, A. N. Oldani, E. Marceca, M. Fujii, S. I. Ishiuchi, M. Miyazaki, M. Broquier, C. Dedonder and C. Jouvet, J. Chem. Phys., 2010, 133, 124313.

    Article  CAS  PubMed  Google Scholar 

  41. A. L. Sobolewski, W. Domcke, C. D. Lardeux and C. Jouvet, Phys. Chem. Chem. Phys., 2002, 4, 1093.

    Article  CAS  Google Scholar 

  42. M. Chachivilis and A. H. Zewail, J. Phys. Chem. A, 1999, 103, 7408–7418.

    Article  CAS  Google Scholar 

  43. Z. L. Cai and J. R. Reimers, J. Phys. Chem. A, 2000, 104, 8389–8408.

    Article  CAS  Google Scholar 

  44. V. Hirata and N. Mataga, J. Phys. Chem., 1984, 88, 3091.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Esboui.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00199k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esboui, M., Jaidane, N. Non-radiative deactivation in phenol–pyridine complex: theoretical study. Photochem Photobiol Sci 14, 1127–1137 (2015). https://doi.org/10.1039/c4pp00199k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00199k

Navigation