Skip to main content
Log in

Protein profiles of Escherichia coli and Staphylococcus warneri are altered by photosensitization with cationic porphyrins

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Oxidative stress induced by photodynamic treatment of microbial cells causes irreversible damages to vital cellular components such as proteins. Photodynamic inactivation (PDI) of bacteria, a promising therapeutic approach for the treatment of superficial and localized skin and oral infections, can be achieved by exciting a photosensitizing agent with visible light in an oxygenated environment. Although some studies have addressed the oxidative alterations of PDI in bacterial proteins, the present study is the first to compare the electrophoretic profiles of proteins of Gram-positive and Gram-negative bacteria, having two structurally different porphyrins, with different kinetics of photoinactivation. The cationic porphyrins 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide (Tri-Py+-Me-PF) and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetra-iodide (Tetra-Py+-Me) were used to photosensitize Escherichia coli and Staphylococcus warneri upon white light irradiation at an irradiance of 4.0 mW cm-2. After different photosensitization periods, proteins were extracted from bacteria and analyzed using one-dimensional SDS-PAGE. Apparent molecular weights and band intensities were determined after an irradiation period corresponding to a reduction of 4 log10 in cell viability. After photodynamic treatment, there was a general loss of bacterial proteins, assigned to large-scale protein degradation. Protein loss was more pronounced after PDI with Tri-Py+-Me-PF in both bacteria. There was also an increase in the concentration of some proteins as well as an increase in the molecular weight of other proteins. We show that proteins of E. coli and S. warneri are important targets of PDI. Although there is an attempt of cellular response to the PDI-induced damage by overexpression of a limited number of proteins, the damage is lethal. Our results show that changes occurring in the protein pattern during photodynamic treatment are different with the two photosensitizers, which helps to explain the different inactivation kinetics of the two bacteria. SDS-PAGE is a rational approach to assign the type of cellular response to stress that is being induced in the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. E. Shacter, Quantification and significance of protein oxidation in biological samples, Drug Metab. Rev., 2000, 32, 307–326.

    Article  CAS  PubMed  Google Scholar 

  2. M. J. Davies, Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun., 2003, 305, 761–770.

    Article  CAS  PubMed  Google Scholar 

  3. A. Juzeniene, K. P. Nielsen and J. Moan, Biophysical aspects of photodynamic therapy, J. Environ. Pathol., Toxicol. Oncol., 2006, 25, 7–28.

    Article  CAS  Google Scholar 

  4. C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 659–659.

  5. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene and D. Kessel, Photodynamic therapy of cancer: an update, CA-Cancer J. Clin., 2011, 61, 250–281.

    Article  PubMed  PubMed Central  Google Scholar 

  6. A. Tavares, S. R. S. Dias, C. M. B. Carvalho, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, N. C. M. Gomes, E. Alves and A. Almeida, Mechanisms of photodynamic inactivation of a Gram-negative recombinant bioluminescent bacterium by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10, 1659–1669.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Nitzan, M. Gutterman, Z. Malik and B. Ehrenberg, Inactivation of Gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  PubMed  Google Scholar 

  8. G. Jori, M. Camerin, M. Soncin, L. Guidolin and O. Coppellotti, Antimicrobial photodynamic therapy: basic principles, in Photodynamic inactivation of microbial pathogens: medical and environmental applications, ed. M. Hamblin and G. Jori, Royal Society of Chemistry, Cambridge, 2011, pp. 3–14.

    Google Scholar 

  9. E. Alves, M. A. F. Faustino, M. G. Neves, A. Cunha, J. Tome and A. Almeida, An insight on bacterial cellular targets of photodynamic inactivation, Future Med. Chem., 2014, 6, 141–164.

    Article  CAS  PubMed  Google Scholar 

  10. T. J. Silhavy, D. Kahne and S. Walker, The bacterial cell envelope, Cold Spring Harbor Perspect. Biol., 2010, 2, a000414.

    Article  CAS  Google Scholar 

  11. E. Alves, N. Santos, T. Melo, E. Maciel, M. L. Dória, M. A. Faustino, J. P. Tomé, M. G. Neves, J. A. Cavaleiro, Â. Cunha, L. A. Helguero, P. Domingues, A. Almeida and M. R. M. Domingues, Photodynamic oxidation of Escherichia coli membrane phospholipids: new insights based on lipidomics, Rapid Commun. Mass Spectrom., 2013, 27, 2717–2728.

    Article  CAS  PubMed  Google Scholar 

  12. E. Alves, N. Santos, T. Melo, E. Maciel, M. L. Dória, M. A. Faustino, J. P. Tomé, M. G. Neves, J. A. Cavaleiro, Â. Cunha, L. A. Helguero and P. Domingues, Photodynamic oxidation of Staphylococcus warneri membrane phospholipids: new insights based on lipidomics, Rapid Commun. Mass Spectrom., 2013, 27, 1607–1618.

    Article  CAS  PubMed  Google Scholar 

  13. D. I. Pattison, A. S. Rahmanto and M. J. Davies, Photo-oxidation of proteins, Photochem. Photobiol. Sci., 2012, 11, 38–53.

    Article  CAS  PubMed  Google Scholar 

  14. M. J. Davies, Reactive species formed on proteins exposed to singlet oxygen, Photochem. Photobiol. Sci., 2004, 3, 17–25.

    Article  CAS  PubMed  Google Scholar 

  15. G. R. Buettner, Molecular targets of photosensitization - some biological chemistry of singlet oxygen (1O2), in Photobiological Sciences Online, ed. K. C. Smith, American Society for Photobiology, 2011, http://www.photobiology.info/Buettner.html, (accessed October 2013).

    Google Scholar 

  16. L. Booth and R. W. Redmond, Can lipid peroxidation of plasma membranes induce DNA strand breaks, Free Radical Biol. Med., 2002, 33, (suppl. 2) S390.

    Google Scholar 

  17. G. D. Ouédraogo and R. W. Redmond, Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization, Photochem. Photobiol., 2003, 77, 192–203.

    Article  PubMed  Google Scholar 

  18. B. Bose and A. Dube, Interaction of chlorin p6 with bovine serum albumin and photodynamic oxidation of protein, J. Photochem. Photobiol., B, 2006, 85, 49–55.

    Article  CAS  Google Scholar 

  19. J. A. Silvester, G. S. Timmins and M. J. Davies, Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin, Arch. Biochem. Biophys., 1998, 350, 249–258.

    Article  CAS  PubMed  Google Scholar 

  20. J. Tamarit, E. Cabiscol and J. Ros, Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress, J. Biol. Chem., 1998, 273, 3027–3032.

    Article  CAS  PubMed  Google Scholar 

  21. G. Bertoloni, F. M. Lauro, G. Cortella and M. Merchat, Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells, Biochim. Biophys. Acta, Gen. Subj., 2000, 1475, 169–174.

    Article  CAS  Google Scholar 

  22. R. Dosselli, R. Millioni, L. Puricelli, P. Tessari, G. Arrigoni, C. Franchin, A. Segalla, E. Teardo and E. Reddi, Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach, J. Proteomics, 2012, 77, 329–343.

    Article  CAS  PubMed  Google Scholar 

  23. G. Valduga, B. Breda, G. M. Giacometti, G. Jori and E. Reddi, Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra (N-methyl-4-pyridyl)porphine, Biochem. Biophys. Res. Commun., 1999, 256, 84–88.

    Article  CAS  PubMed  Google Scholar 

  24. M. C. Gomes, S. Silva, M. A. F. Faustino, M. G. P. M. S. Neves, A. Almeida, J. A. S. Cavaleiro, J. P. C. Tome and A. Cunha, Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1O2, Photochem. Photobiol. Sci., 2013, 12, 262–271.

    Article  CAS  PubMed  Google Scholar 

  25. A. Segalla, C. D. Borsarelli, S. E. Braslavsky, J. D. Spikes, G. Roncucci, D. Dei, G. Chiti, G. Jori and E. Reddi, Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine, Photochem. Photobiol. Sci., 2002, 1, 641–648.

    Article  CAS  PubMed  Google Scholar 

  26. S. George and A. Kishen, Influence of photosensitizer solvent on the mechanisms of photoactivated killing of Enterococcus faecalis, Photochem. Photobiol., 2008, 84, 734–740.

    Article  CAS  PubMed  Google Scholar 

  27. S.-L. Lin, J.-M. Hu, S.-S. Tang, X.-Y. Wu, Z.-Q. Chen, S.-Z. Tang, Photodynamic inactivation of methylene blue and tungsten-halogen lamp light against food pathogen Listeria monocytogenes, Photochem. Photobiol., 2012, 88, 985–991.

    Article  CAS  PubMed  Google Scholar 

  28. M. Bhatti, A. MacRobert, S. Meghji, B. Henderson and M. Wilson, A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization, Photochem. Photobiol., 1998, 68, 370–376.

    Article  CAS  PubMed  Google Scholar 

  29. M. Bhatti, S. P. Nair, A. J. Macrobert, B. Henderson, P. Shepherd, J. Cridland and M. Wilson, Identification of photolabile outer membrane proteins of Porphyromonas gingivalis, Curr. Microbiol., 2001, 43, 96–99.

    Article  CAS  PubMed  Google Scholar 

  30. S. Packer, M. Bhatti, T. Burns and M. Wilson, Inactivation of proteolytic enzymes from Porphyromonas gingivalis using light-activated agents, Lasers Med. Sci., 2000, 15, 24–30.

    Article  CAS  PubMed  Google Scholar 

  31. F. Arslan, N. Saltoglu, B. Mete and A. Mert, Recurrent Staphylococcus warnerii prosthetic valve endocarditis: a case report and review, Ann. Clin. Microbiol. Antimicrob., 2011, 10, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  32. K. J. Center, A. C. Reboli, R. Hubler, G. L. Rodgers and S. S. Long, Decreased vancomycin susceptibility of coagulase-negative staphylococci in a neonatal intensive care unit: evidence of spread of Staphylococcus warneri, J. Clin. Microbiol., 2003, 41, 4660–4665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. P. Cimiotti, J. P. Haas, P. Della-Latta, F. Wu, L. Saiman and E. L. Larson, Prevalence and clinical relevance of Staphylococcus warneri in the neonatal intensive care unit, Infect. Control Hosp. Epidemiol., 2007, 28, 326–330.

    Article  PubMed  PubMed Central  Google Scholar 

  34. V. Hira, M. Sluijter, W. H. F. Goessens, A. Ott, R. de Groot, P. W. M. Hermans and R. F. Kornelisse, Coagulase-negative staphylococcal skin carriage among neonatal intensive care unit personnel: from population to infection, J. Clin. Microbiol., 2010, 48, 3876–3881.

    Article  PubMed  PubMed Central  Google Scholar 

  35. C. Stöllberger, A. Wechsler-Fördös, F. Geppert, W. Gulz, E. Brownstone, M. Nicolakis and J. Finsterer, Staphylococcus warneri endocarditis after implantation of a lumbar disc prosthesis in an immunocompetent patient, J. Infect. Dis., 2006, 52, e15–e18.

    Google Scholar 

  36. C. Raetz, Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli, Microbiol. Rev., 1978, 42, 614–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. C. Gomes, S. M. Woranovicz-Barreira, M. A. F. Faustino, R. Fernandes, M. G. P. M. S. Neves, A. C. Tome, N. C. M. Gomes, A. Almeida, J. A. S. Cavaleiro, A. Cunha and J. P. C. Tome, Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10, 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  38. C. M. B. Carvalho, A. T. P. C. Gomes, S. C. D. Fernandes, A. C. B. Prata, M. A. Almeida, M. A. Cunha, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Z. Lin, J. P. Rainho and J. Rocha, Photoinactivation of bacteria in wastewater by porphyrins: bacterial beta-galactosidase activity and leucine-uptake as methods to monitor the process, J. Photochem. Photobiol., B, 2007, 88, 112–118.

    Article  CAS  Google Scholar 

  39. C. M. B. Carvalho, E. Alves, L. Costa, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Almeida, Â. Cunha, Z. Lin and J. Rocha, Functional cationic nanomagnet-porphyrin hybrids for the photoinactivation of microorganisms, ACS Nano, 2010, 4, 7133–7140.

    Article  CAS  PubMed  Google Scholar 

  40. A. Almeida, J. A. S. Cavaleiro, J. Rocha, C. M. B. Carvalho, L. A. S. Costa, E. Alves, A. Cunha, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, Z. Lin and J. P. J. Rainho, Nanomagnet-porphyrin hybrid materials: synthesis and water disinfection application, Portuguese Patent PT, 103–828, 2009, Portugal.

    Google Scholar 

  41. E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, Â. Cunha and A. Almeida, Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins, BMC Microbiol., 2009, 9, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  42. E. Alves, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes and A. Almeida, Photodynamic antimicrobial chemotherapy in aquaculture: photoinactivation studies of Vibrio fischeri, PLoS One, 2011, 6, e20970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Arrojado, C. Pereira, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, R. Calado, N. C. M. Gomes and A. Almeida, Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems, Photochem. Photobiol. Sci., 2011, 10, 1691–1700.

    Article  CAS  PubMed  Google Scholar 

  44. L. Costa, C. M. B. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, Â. Cunha, N. C. M. Gomes and A. Almeida, Study of viral resistance following repeated exposure to aPDT and of viability recovery, Antiviral Res., 2011, 91, 278–282.

    Article  CAS  PubMed  Google Scholar 

  45. A. Oliveira, A. Almeida, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores, J. Appl. Microbiol., 2009, 106, 1986–1995.

    Article  CAS  PubMed  Google Scholar 

  46. L. Costa, A. C. Esteves, A. Correia, C. Moreirinha, I. Delgadillo, A. Cunha, M. G. P. S. Neves, M. A. F. Faustino and A. Almeida, SDS-PAGE and IR spectroscopy to evaluate modifications in the viral protein profile induced by a cationic porphyrinic photosensitizer, J. Virol. Methods, 2014, 209, 103–109.

    Article  CAS  PubMed  Google Scholar 

  47. U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  48. V. Neuhoff, R. Stamm and H. Eibl, Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis, modified by A. Posch., Electrophoresis, 1985, 6, 427–448.

    Article  CAS  Google Scholar 

  49. M. F. Lemos, A. M. V. M. Soares, A. C. Correia and A. C. Esteves, Proteins in ecotoxicology–how, why and why not?, Proteomics, 2010, 10, 873–887.

    Article  CAS  PubMed  Google Scholar 

  50. M. F. Lemos, A. C. Esteves, B. Samyn, I. Timperman, J. van Beeumen, A. Correia, C. A. M. van Gestel, A. M. V. M. Soares, Protein differential expression induced by endocrine disrupting compounds in a terrestrial isopod, Chemosphere, 2010, 79, 570–576.

    Article  CAS  PubMed  Google Scholar 

  51. F. Fu, V. W. Cheng, Y. Wu, Y. Tang, J. H. Weiner and L. Li, Comparative proteomic and metabolomic analysis of Staphylococcus warneri SG1 cultured in the presence and absence of butanol, J. Proteome Res., 2013, 12, 4478–4489.

    Article  CAS  PubMed  Google Scholar 

  52. M.-J. Han and S. Y. Lee, The Escherichia coli proteome: past, present, and future prospects, Microbiol. Mol. Biol. Rev., 2006, 70, 362–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. E. Alves, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes and A. Almeida, Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins, Bioorg. Med. Chem., 2013, 21, 4311–4318.

    Article  CAS  PubMed  Google Scholar 

  54. S. Altuvia, M. Almiron, G. Huisman, R. Kolter and G. Storz, The dps promoter is activated by OxyR during growth and by IHF and sS in stationary phase, Mol. Microbiol., 1994, 13, 265–272.

    Article  CAS  PubMed  Google Scholar 

  55. M. Bolean, T. d. P. Paulino, G. Thedei Jr. and P. Ciancaglini, Photodynamic therapy with rose Bengal induces GroEL expression in Streptococcus mutans, Photomed. Laser Surg., 2010, 28, S79–S84.

    Article  CAS  PubMed  Google Scholar 

  56. T. G. St Denis, L. Huang, T. Dai and M. R. Hamblin, Analysis of the bacterial heat shock response to photodynamic therapy-mediated oxidative stress, Photochem. Photobiol., 2011, 87, 707–713.

    Article  CAS  Google Scholar 

  57. M. Gracanin, C. Hawkins, D. Pattison and M. Davies, Singlet-oxygen-mediated amino acid and protein oxidation: Formation of tryptophan peroxides and decomposition products, Free Radical Biol. Med., 2009, 47, 92–102.1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelaide Almeida.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00194j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, E., Esteves, A.C., Correia, A. et al. Protein profiles of Escherichia coli and Staphylococcus warneri are altered by photosensitization with cationic porphyrins. Photochem Photobiol Sci 14, 1169–1178 (2015). https://doi.org/10.1039/c4pp00194j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00194j

Navigation