Skip to main content
Log in

Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Increasing antibiotic resistance is one of the world’s greatest health problems. The food chain is an important factor in the transfer of resistant germs from animals to humans. This study focuses on photodynamic inactivation (PDI), employing curcumin bound to polyvinylpyrrolidone (PVP-C) and NovaSol®-curcumin as photosensitizers, as potent tool for the decontamination of cucumber, pepper and chicken meat from Staphylococcus aureus (serving as the model for methicillin-resistant S. aureus, MRSA). Both curcumin and PVP have been approved as food additives, consequently exhibiting excellent biocompatibility. Vegetables and meat were contaminated with S. aureus and sprinkled with PVP-C and NovaSol®-curcumin at concentrations of 50 and 100 μM, respectively. Illumination was performed immediately using visible light (435 nm, 9.4 mW cm−2, 33.8 J cm−2). The PDI efficiency was determined by quantitative analyses of colony forming units 24 h post illumination. Additionally, the long-term effects of the photodynamic inactivation on cucumbers were investigated by quantitative analyses of the viable bacterial fraction after 24 and 48 h. Photodynamic inactivation of S. aureus revealed a mean reduction of 2.6 log10 (99.8%) for cucumbers, 2.5 log10 (99.7%) for pepper and 1.7 log10 (98%) for chicken meat relative to control samples. The bactericidal effect compared to controls seems to last for at least 48 h. Furthermore, no visible changes of the exterior appearance of foodstuff after photodynamic decontamination were observed. Photodynamic inactivation may therefore constitute a safe, economic and effective decontamination technique, which is harmless to health and not noticeable to consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPBS:

Dulbeccos’s phosphate buffered saline

MRSA:

Methicillin-resistant Staphylococcus aureus

NovaSol®-C:

NovaSol®-curcumin

PDI:

Photodynamic inactivation

PS:

Photosensitizer

PVP:

Polyvinylpyrrolidone

PVP-C:

Curcumin bound to polyvinylpyrrolidone

ROS:

Reactive oxygen species

References

  1. H. W. Boucher, et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin. Infect. Dis., 2009, 48(1), 1–12.

    Article  Google Scholar 

  2. ECDC/EMEA, The bacterial challenge: time to react, 2009.

    Google Scholar 

  3. Prevention, U.C.f.D.C.a., Antibiotic resistance threats in the United States, 2013.

    Google Scholar 

  4. WHO. Antimicrobial resistance [last accessed on 30.01.2014]. 2014; Available from: http://www.who.int/drugresistance/en/.

    Google Scholar 

  5. R. Laxminarayan, et al., Antibiotic resistance-the need for global solutions, Lancet Infect. Dis., 2013, 13(12), 1057–1098.

    Article  Google Scholar 

  6. B. M. Marshall, S. B. Levy, Food animals and antimicrobials: impacts on human health, Clin. Microbiol. Rev., 2011, 24(4), 718–733.

    Article  CAS  Google Scholar 

  7. B. Lassok, B. A. Tenhagen, From pig to pork: methicillin-resistant Staphylococcus aureus in the pork production chain, J. Food Prot., 2013, 76(6), 1095–1108.

    Article  CAS  Google Scholar 

  8. C. Verraes, et al., Antimicrobial resistance in the food chain: a review, Int. J. Environ. Res. Public Health, 2013, 10(7), 2643–2669.

    Article  Google Scholar 

  9. R. P. Vonberg, et al., Duration of fecal shedding of Shiga toxin-producing Escherichia coli O104:H4 in patients infected during the 2011 outbreak in Germany: a multicenter study, Clin. Infect. Dis., 2013, 56(8), 1132–1140.

    Article  CAS  Google Scholar 

  10. C. Devirgiliis, S. Barile, G. Perozzi, Antibiotic resistance determinants in the interplay between food and gut microbiota, Genes Nutr., 2011, 6(3), 275–284.

    Article  CAS  Google Scholar 

  11. E. Commission, Effects of Biocides on antibiotic resistance, 2009, European Commission; Scientific Committees: B-1049 Brussels.

    Google Scholar 

  12. E. Parliament, REGULATION (EC) No 853/2004 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs in Official Journal of the European Union 2004. p. 151.

    Google Scholar 

  13. R. Johnson, U.S.-EU Poultry Dispute on the Use of Pathogen Reduction Treatments (PRTs) C.R. Service, Editor 2012, Congressional Research Service.

    Google Scholar 

  14. T. G. St Denis, et al., All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease, Virulence, 2011, 2(6), 509–520.

    Article  Google Scholar 

  15. T. Dai, Y. Y. Huang, M. R. Hamblin, Photodynamic therapy for localized infections-state of the art, Photodiagn. Photodyn. Ther., 2009, 6(3-4), 170–188.

    Article  CAS  Google Scholar 

  16. K. Plaetzer, et al., Photophysics and photochemistry of photodynamic therapy: fundamental aspects, Lasers Med. Sci., 2009, 24(2), 259–268.

    Article  CAS  Google Scholar 

  17. C. Schiborr, et al., The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes, Mol. Nutr. Food Res., 2014, 58(3), 516–527.

    Article  CAS  Google Scholar 

  18. S. Winter, et al., Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer, Photochem. Photobiol. Sci., 2013, 12(10), 1795–1802.

    Article  CAS  Google Scholar 

  19. A. T. Fessler, et al., Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany, Appl. Environ. Microbiol., 2011, 77(20), 7151–7157.

    Article  CAS  Google Scholar 

  20. S. Johler, et al., Outbreak of Staphylococcal food poisoning due to SEA-producing Staphylococcus aureus, Foodborne Pathog. Dis., 2013, 10(9), 777–781.

    Article  CAS  Google Scholar 

  21. H. H. Tonnesen, J. Karlsen, G. B. van Henegouwen, Studies on curcumin and curcuminoids. VIII. Photochemical stability of curcumin, Z. Lebensm.-Unters.-Forsch., 1986, 183(2), 116–122.

    Article  CAS  Google Scholar 

  22. D. Kumar, et al., Free Radical Scavenging and Analgesic Activities of Cucumis sativus L. Fruit Extract, J. Young Pharm., 2010, 2(4), 365–368.

    Article  CAS  Google Scholar 

  23. M. Loretz, R. Stephan, C. Zweifel, Antimicrobial activity of decontamination treatments for poultry carcasses: A literature survey, Food Control, 2010, 21(6), 791–804.

    Article  CAS  Google Scholar 

  24. R. N. Costilow, M. A. Uebersax, P. J. Ward, Use of Chlorine Dioxide for Controlling Microorganisms during the Handling and Storage of Fresh Cucumbers, J. Food Sci., 1984, 49(2), 396–401.

    Article  CAS  Google Scholar 

  25. L. Boysen, H. Rosenquist, Reduction of thermotolerant Campylobacter species on broiler carcasses following physical decontamination at slaughter, J. Food Prot., 2009, 72(3), 497–502.

    Article  Google Scholar 

  26. J. F. B. D. São José, et al., Decontamination by ultrasound application in fresh fruits and vegetables, Food Control, 2014, 45(0), 36–50.

    Article  Google Scholar 

  27. Z. Luksiene, E. Paskeviciute, Novel approach to the microbial decontamination of strawberries: chlorophyllin-based photosensitization, J. Appl. Microbiol., 2011, 110(5), 1274–1283.

    Article  CAS  Google Scholar 

  28. C. Muller, M. Riederer, Plant surface properties in chemical ecology, J. Chem. Ecol., 2005, 31(11), 2621–2651.

    Article  Google Scholar 

  29. L. R. Howard, et al., Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity, J. Agric. Food Chem., 2000, 48(5), 1713–1720.

    Article  CAS  Google Scholar 

  30. D. Babu, et al., Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp., J. Food Sci., 2013, 78(12), M1899–M1903.

    Article  CAS  Google Scholar 

  31. T. Haukvik, et al., Photokilling of bacteria by curcumin in different aqueous preparations. Studies on curcumin and curcuminoids XXXVII, Pharmazie, 2009, 64(10), 666–673.

    CAS  PubMed  Google Scholar 

  32. H. H. Tonnesen, Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII, Pharmazie, 2002, 57(12), 820–824.

    CAS  PubMed  Google Scholar 

  33. H. H. Tonnesen, M. Masson, T. Loftsson, Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability, Int. J. Pharm., 2002, 244(1-2), 127–135.

    Article  CAS  Google Scholar 

  34. H. H. Tonnesen, Solubility and stability of curcumin in solutions containing alginate and other viscosity modifying macromolecules. Studies of curcumin and curcuminoids. XXX, Pharmazie, 2006, 61(8), 696–700.

    PubMed  Google Scholar 

  35. A. B. Hegge, et al., Impact of curcumin supersaturation in antibacterial photodynamic therapy—effect of cyclodextrin type and amount: studies on curcumin and curcuminoides XLV, J. Pharm. Sci., 2012, 101(4), 1524–1537.

    Article  CAS  Google Scholar 

  36. M. Maclean, et al., Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array, Appl. Environ. Microbiol., 2009, 75(7), 1932–1937.

    Article  CAS  Google Scholar 

  37. A. A. Miles, S. S. Misra, J. O. Irwin, The estimation of the bactericidal power of the blood, J. Hyg. (Lond), 1938, 38(6), 732–749.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristjan Plaetzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortik, N., Spaeth, A. & Plaetzer, K. Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin. Photochem Photobiol Sci 13, 1402–1409 (2014). https://doi.org/10.1039/c4pp00123k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00123k

Navigation