Skip to main content
Log in

In vitro sensing of Cu+ through a green fluorescence rise of pyranine

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Pyranine as a new class of fluorescent chemosensor for the Cu+ ion is reported. The probe is capable of discriminating ranges of cations from the Cu+ ion, even in competing environment. The dye displayed a rapid fluorescence response (t1/2 = 1.66 min) towards the Cu+ ion, and the micromolar detection limit enabled the detection of the ion in environmental samples. The observed stoichiometry of complexation between pyranine and Cu+ was 2: 1. Interestingly, the sensing characteristic was specific to only neutral pH. A metal-to-ligand charge-transfer (MLCT)-based mechanism of sensing was proposed based on electron spin resonance (EPR), Raman spectroscopic and cyclic voltammetric studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. Taki, S. Iyoshi, A. Ojida, I. Hamachi, Y. Yamamoto, Development of Highly Sensitive Fluorescent Probes for Detection of Intracellular Copper(I) in Living Systems, J. Am. Chem. Soc., 2010, 132, 5938–5939.

    Article  CAS  Google Scholar 

  2. C. Jegerschoeld, F. MacMillan, W. Lubitz, A. W. Rutherford, Effects of Copper and Zinc Ions on Photosystem II Studied by EPR Spectroscopy, Biochemistry, 1999, 38, 12439–12445.

    Article  CAS  Google Scholar 

  3. D. R. Deshmukh, O. Mirochnitchenko, V. S. Ghole, D. Agnese, P. C. Shah, M. Reddell, R. E. Brolin, M. Inouye, Intestinal ischemia and reperfusion injury in transgenic mice overexpressing copper-zinc superoxide dismutase, Am. J. Physiol., 1997, 273, C1130–C1135.

    Article  CAS  Google Scholar 

  4. H. H. A. Dollwet, J. R. J. Sorenson, Roles of copper in bone maintenance and healing, Biol. Trace Elem. Res., 1988, 18, 39–48.

    Article  CAS  Google Scholar 

  5. A. B. G. Lansdown, Metal ions affecting the skin and eyes, Met. Ions Life Sci., 2011, 8, 187–246.

    CAS  PubMed  Google Scholar 

  6. M. C. Linder, M. Hazegh-Azam, Copper biochemistry and molecular biology, Am. J. Clin. Nutr., 1996, 63, 797S–811S.

    CAS  PubMed  Google Scholar 

  7. D. Y. Sasaki, D. R. Shnek, D. W. Pack, F. H. Arnold, Metal-induced dispersion of lipid aggregates: a simple, selective, and sensitive fluorescent metal ion sensor, Angew. Chem., Int. Ed Engl.., 1995, 34, 905–907.

    Article  CAS  Google Scholar 

  8. J. Yoshii, H. Yoshiji, S. Kuriyama, Y. Ikenaka, R. Noguchi, H. Okuda, H. Tsujinoue, T. Nakatani, H. Kishida, D. Nakae, D. E. Gomez, M. S. de Lorenzo, A. M. Tejera, H. Fukui, The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells, Int. J. Cancer, 2001, 94, 768–773.

    Article  CAS  Google Scholar 

  9. L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff, C. J. Chang, A Selective Turn-On Fluorescent Sensor for Imaging Copper in Living Cells, J. Am. Chem. Soc., 2006, 128, 10–11.

    Article  CAS  Google Scholar 

  10. J. S. Valentine, P. J. Hart, Misfolded CuZnSOD and amyotrophic lateral sclerosis, Proc. Nat. Acad. Sci. U. S. A., 2003, 100, 3617–3622.

    Article  CAS  Google Scholar 

  11. L. I. Bruijn, T. M. Miller, D. W. Cleveland, Unraveling the mechanisms involved in motor neuron degeneration in ALS, Annu. Rev. Neurosci., 2004, 27, 723–749.

    Article  CAS  Google Scholar 

  12. K. J. Barnham, C. L. Masters, A. I. Bush, Neurodegenerative diseases and oxidative stress, Nat. Rev. Drug Discovery, 2004, 3, 205–214.

    Article  CAS  Google Scholar 

  13. S. Yoon, E. Albers Aaron, P. Wong Audrey, J. Chang Christopher, Screening mercury levels in fish with a selective fluorescent chemosensor, J. Am. Chem. Soc., 2005, 127, 16030–16031.

    Article  CAS  Google Scholar 

  14. S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe, J. Am. Chem. Soc., 2006, 128, 14150–14155.

    Article  CAS  Google Scholar 

  15. P. Jiang, Z. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors, Coord. Chem. Rev., 2004, 248, 205–229.

    Article  CAS  Google Scholar 

  16. K. Kikuchi, K. Komatsu, T. Nagano, Zinc sensing for cellular application, Curr. Opin. Chem. Biol., 2004, 8, 182–191.

    Article  CAS  Google Scholar 

  17. X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, S. Sun, T. Xu, A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells, J. Am. Chem. Soc., 2007, 129, 1500–1501.

    Article  CAS  Google Scholar 

  18. M. Taki, M. Desaki, A. Ojida, S. Iyoshi, T. Hirayama, I. Hamachi, Y. Yamamoto, Fluorescence Imaging of Intracellular Cadmium Using a Dual-Excitation Ratiometric Chemosensor, J. Am. Chem. Soc., 2008, 130, 12564–12565.

    Article  CAS  Google Scholar 

  19. R. W. Tsien, R. Y. Tsien, Calcium channels, stores, and oscillations, Annu. Rev. Cell Biol., 1990, 6, 715–760.

    Article  CAS  Google Scholar 

  20. G. Dacarro, P. Pallavicini, A. Taglietti, The pH controlled uptake/release of citrate by a tri-copper(II) complex, New J. Chem., 2008, 32, 1839–1842.

    Article  CAS  Google Scholar 

  21. N. Shao, Y. Zhang, S. Cheung, R. Yang, W. Chan, T. Mo, K. Li, F. Liu, Copper Ion-Selective Fluorescent Sensor Based on the Inner Filter Effect Using a Spiropyran Derivative, Anal. Chem., 2005, 77, 7294–7303.

    Article  CAS  Google Scholar 

  22. J. Jo, H. Y. Lee, W. Liu, A. Olasz, C.-H. Chen, D. Lee, Reactivity-Based Detection of Copper(II) Ion in Water: Oxidative Cyclization of Azoaromatics as Fluorescence Turn-On Signaling Mechanism, J. Am. Chem. Soc., 2012, 134, 16000–16007.

    Article  CAS  Google Scholar 

  23. L. Yang, R. McRae, M. M. Henary, R. Patel, B. Lai, S. Vogt, C. J. Fahrni, Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy, Proc. Nat. Acad. Sci. U. S. A., 2005, 102, 11179–11184.

    Article  CAS  Google Scholar 

  24. S. Park, H.-J. Kim, Highly selective and sensitive fluorescence turn-on probe for a catalytic amount of Cu(I) ions in water through the click reaction, Tetrahedron Lett., 2012, 53, 4473–4475.

    Article  CAS  Google Scholar 

  25. J. Qi, M. S. Han, C.-H. Tung, A benzothiazole alkyne fluorescent sensor for Cu detection in living cell, Bioorg. Med. Chem. Lett., 2012, 22, 1747–1749.

    Article  CAS  Google Scholar 

  26. O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, H. Marsoner, Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values, Fresenius’ Z. Anal. Chem., 1983, 314, 119–124.

    Article  CAS  Google Scholar 

  27. E. Pines, D. Huppert, Observation of geminate recombination in excited state proton transfer, J. Chem. Phys., 1986, 84, 3576–3577.

    Article  CAS  Google Scholar 

  28. R. Gepshtein, P. Leiderman, L. Genosar, D. Huppert, Testing the Three Step Excited State Proton Transfer Model by the Effect of an Excess Proton, J. Phys. Chem. A, 2005, 109, 9674–9684.

    Article  CAS  Google Scholar 

  29. O. S. Wolfbeis, H. E. Posch, Fibre-optic fluorescing sensor for ammonia, Anal. Chim. Acta, 1986, 185, 321–327.

    Article  CAS  Google Scholar 

  30. B. Muller, P. C. Hauser, Fluorescence optical sensor for low concentrations of dissolved carbon dioxide, Analyst, 1996, 121, 339–343.

    Article  Google Scholar 

  31. R. MacQuarrie, Q. H. Gibson, Ligand Binding and Release of an Analogue of 2,3-Diphosphoglycerate from Human Hemoglobin, J. Biol. Chem., 1972, 247, 5686–5694.

    Article  CAS  Google Scholar 

  32. P. S. Donnelly, S. D. Zanatta, S. C. Zammit, J. M. White, S. J. Williams, ‘Click’ cycloaddition catalysts: copper(i) and copper(ii) tris(triazolylmethyl)amine complexes, Chem. Commun., 2008, 2459–2461.

    Google Scholar 

  33. P. Barathi, A. Senthil Kumar, Electrochemical Conversion of Unreactive Pyrene to Highly Redox-Active 1,2-Quinone Derivatives on a Carbon Nanotube-Modified Gold Electrode Surface and Its Selective Hydrogen Peroxide Sensing, Langmuir, 2013, 29, 10617–10623.

    Article  CAS  Google Scholar 

  34. J.-M. Zen, H.-H. Chung, A. S. Kumar, Selective Detection of o-Diphenols on Copper-Plated Screen-Printed Electrodes, Anal. Chem., 2002, 74, 1202–1206.

    Article  CAS  Google Scholar 

  35. A. S. Kumar, Y.-M. Ji, S. Sornambikai, P.-Y. Chen, Y. Shih, Flow injection analysis of ellagic acid in cosmetic skin-whitening creams using a dendritic nanostructured copper-gold alloy plated screen-printed carbon electrode, Int. J. Electrochem. Sci., 2011, 6, 5344–5356.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki Talukdar.

Additional information

† Electronic supplementary information (ESI) available: Additional experimental procedures, fluorescence spectra and cyclic voltammetry. See DOI: 10.1039/c4pp00097h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, T., Sengupta, A., Hazra, P. et al. In vitro sensing of Cu+ through a green fluorescence rise of pyranine. Photochem Photobiol Sci 13, 1427–1433 (2014). https://doi.org/10.1039/c4pp00097h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00097h

Navigation