Skip to main content
Log in

Facile synthesis of gold–silver alloy nanoparticles for application in metal enhanced bioluminescence

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the present study we explored metal enhanced bioluminescence in luciferase enzymes for the first time. For this purpose a simple and reproducible one pot synthesis of gold–silver alloy nanoparticles was developed. By changing the molar ratio of tri-sodium citrate and silver nitrate we could synthesize spherical Au–Ag colloids of sizes ranging from 10 to 50 nm with a wide range of localized surface plasmon resonance (LSPR) peaks (450–550 nm). The optical tunability of the Au–Ag colloids enabled their effective use in enhancement of bioluminescence in a luminescent bacterium Photobacterium leiognathi and in luciferase enzyme systems from fireflies and bacteria. Enhancement of bioluminescence was 250% for bacterial cells, 95% for bacterial luciferase and 52% for firefly luciferase enzyme. The enhancement may be a result of energy transfer or plasmon induced enhancement. Such an increase can lead to higher sensitivity in detection of bioluminescent signals with potential applications in bio-analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. T. Bell, The Impact of Nanoscience on Heterogeneous Catalysis, Science, 2003, 299, 1688, DOI: 10.1126/science.1083671.

    Article  CAS  Google Scholar 

  2. S. Kundu, K. Wang and H. Liang, Size-Controlled Synthesis and Self-Assembly of Silver Nanoparticles within a Minute Using Microwave Irradiation, J. Phys. Chem. C, 2009, 113, 134, DOI: 10.1021/jp808292s.

    Article  CAS  Google Scholar 

  3. Y. Q. Wang, W. S. Liang and C. Y. Geng, Coalescence Behaviour of Gold Nanoparticles, Nanoscale Res. Lett., 2009, 4, 684, DOI: 10.1007/s11671-009-9298-6.

    Article  CAS  Google Scholar 

  4. M. C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, 104, 293–346, DOI: 10.1021/cr030698+.

    Article  CAS  Google Scholar 

  5. M. P. Pileni, Control of the Size and Shape of Inorganic Nanocrystals at Various Scales from Nano to Macrodomains, J. Phys. Chem. C, 2007, 111, 9019, DOI: 10.1021/jp070646e.

    Article  CAS  Google Scholar 

  6. S. K. Tripathy, Nanophotothermolysis of Poly-(vinyl) Alcohol Capped Silver Particles, Nanoscale Res. Lett., 2008, 3, 164, DOI: 10.1007/s11671-008-9131-7.

    Article  Google Scholar 

  7. S. Pyrpassopoulos, D. Niarchos, G. Nounesis, N. Boukos, I. Zafiropoulou and V. Tzitzios, Synthesis and self-organization of Au nanoparticles, Nanotechnology, 2007, 18, 485604, DOI: 10.1088/0957-4484/18/48/485604.

    Article  Google Scholar 

  8. S. Rucareanu, V. J. Gandubert and R. B. Lennox, 4-(N,N-Dimethylamino)pyridine-Protected Au Nanoparticles: Versatile Precursors for Water- and Organic-Soluble Gold Nanoparticles, Chem. Mater., 2006, 18, 4674, DOI: 10.1021/cm060793+.

    Article  CAS  Google Scholar 

  9. M. Watanabe, H. Takamura and H. Sugai, Preparation of Ultrafine Fe–Pt Alloy and Au Nanoparticle Colloids by KrF Excimer Laser Solution Photolysis, Nanoscale Res. Lett., 2009, 4, 565, DOI: 10.1007/s11671-009-9281-2.

    Article  CAS  Google Scholar 

  10. Y. Cui, B. Ren, J. L. Yao, R. A. Gu and Z. Q. Tian, Synthesis of Ag core Au shell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy, J. Phys. Chem. B, 2006, 110, 4002, DOI: 10.1021/jp056203x.

    Article  CAS  Google Scholar 

  11. S. Link, Z. L. Wang and M. A. El-Sayed, Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition, J. Phys. Chem. B, 1999, 103, 3529, DOI: 10.1021/jp990387w.

    Article  CAS  Google Scholar 

  12. C. D. Geddes, Metal-enhanced bioluminescence: an approach for monitoring biological luminescent processes (patent), 20120028270, 2012.

    Google Scholar 

  13. H. Mertens, A. F. Koenderink and A. Polman, Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model, Phys. Rev. B: Condens. Matter, 2007, 76, 115123, DOI: 10.1103/physrevb.76.115123.

    Article  Google Scholar 

  14. Z. Xia and J. Rao, Biosensing and imaging based on bioluminescence resonance energy transfer, Curr. Opin. Biotechnol., 2009, 20, 37, DOI: 10.1016/j.copbio.2009.01.001.

    Article  CAS  Google Scholar 

  15. C.-Y. Hsua, C.-W. Chen, H.-P. Yu, Y.-F. Lin and P.-S. Lai, Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy, Biomaterials, 2013, 34, 1204, DOI: 10.1016/j.biomaterials.2012.08.044.

    Article  Google Scholar 

  16. E. Eltzov, D. Prilutsky, A. Kushmaro, R. S. Marks and C. D. Geddes, Metal-enhanced bioluminescence: an approach for monitoring biological luminescent processes, Appl. Phys. Lett., 2009, 94, 083901, DOI: 10.1063/1.3086283.

    Article  Google Scholar 

  17. K. S. Abhijith and M. S. Thakur, Application of green synthesis of gold nanoparticles for sensitive detection of aflatoxin B1 based on metal enhanced fluorescence, Anal. Methods, 2012, 4, 4250, DOI: 10.1039/C2AY25979F.

    Article  CAS  Google Scholar 

  18. H. Xia, S. Bai, J. Hartmann and D. Wang, Synthesis of Monodisperse Quasi-Spherical Gold Nanoparticles in Water via Silver(I)-Assisted Citrate Reduction, Langmuir, 2010, 26, 3585, DOI: 10.1021/la902987w.

    Article  CAS  Google Scholar 

  19. R. Ranjan, N. K. Rastogi and M. S. Thakur, Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide, J. Hazard. Mater., 2012, 225, 114, DOI: 10.1016/j.jhazmat.2012.04.076.

    Article  Google Scholar 

  20. C. Engelbrekt, P. S. Jensen and H. S. Karsten, Complexity of Gold Nanoparticle Formation Disclosed by Dynamics Study, J. Phys. Chem. C, 2013, 117, 11818, DOI: 10.1021/jp401883h.

    Article  CAS  Google Scholar 

  21. P. K. Sen, A. B. Bilkis and K. K. Sen Gupta, Kinetics and mechanism of the oxidation of glycolaldehyde by tetrachloroaurate(iii), Int. J. Chem. Kinet., 1998, 30, 613, DOI: 10.1002/(SICI)1097-4601.

    Article  CAS  Google Scholar 

  22. Z. S. Pillai and P. V. Kamat, What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method?, J. Phys. Chem. B, 2004, 108, 945, DOI: 10.1021/jp037018r.

    Article  CAS  Google Scholar 

  23. M. H. Chowdhury, K. Aslan, S. N. Malyn, J. R. Lakowicz and C. D. Geddes, Metal-enhanced chemiluminescence: Radiating plasmons generated from chemically induced electronic excited states, Appl. Phys. Lett., 2006, 88, 173104, DOI: 10.1063/1.2195776.

    Article  Google Scholar 

  24. K. S. Abhijith, K. Vasanthragavan and M. S. Thakur, Gold nanoparticles enhanced chemiluminescence–A novel approach for sensitive detection of Aflatoxin B1, Anal. Methods, 2013, 5, 4838, DOI: 10.1039/c3ay40694f.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Thakur.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00046c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhijith, K.S., Sharma, R., Ranjan, R. et al. Facile synthesis of gold–silver alloy nanoparticles for application in metal enhanced bioluminescence. Photochem Photobiol Sci 13, 986–991 (2014). https://doi.org/10.1039/c4pp00046c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00046c

Navigation