Skip to main content
Log in

Interaction of extrinsic chemical factors affecting photodegradation of dissolved organic matter in aquatic ecosystems

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photochemical degradation of dissolved organic matter (DOM) plays an important role in the carbon cycle. Irradiation experiments were conducted to evaluate the influence of chemical factors, specifically those expected to be altered in natural waters by atmospheric acid deposition, on photodegradation of DOM. These included pH, nitrate, iron and calcium. The experiments were carried out using stream and lake water samples with a wide range of dissolved organic carbon (DOC) concentration. Decreasing DOC concentration along with decreasing absorbance was observed during three-week exposures to natural solar radiation as well as during laboratory experiments with artificial solar radiation. The pH of the samples significantly affected degradation rates of DOM especially with elevated iron, while no influence of nitrate or calcium concentration was observed. Addition of FeIII did not significantly affect photodegradation and photobleaching rate constants in samples at circumneutral pH. Acid pH increased photodegradation rates. The results suggest that photodegradation rates of DOM will decrease during recovery from acidification. Hence, lower photodegradation rates may be responsible for increases in DOM observed in some regions of North America and Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bertilsson and L. J. Tranvik, Photochemical transformation of dissolved organic matter in lakes. Limnol. Oceanogr., 2000, 45, 753–762.

    Article  CAS  Google Scholar 

  2. C. Gennings, L. A. Molot and P. J. Dillon, Enhanced photochemical loss of organic carbon in acidic waters. Biogeochemistry, 2001, 52, 339–354.

    Article  CAS  Google Scholar 

  3. A. M. Anesio, W. Granéli, Increased photoreactivity of DOC by acidification: Implications for the carbon cycle in humic lakes. Limnol. Oceanogr., 2003, 48, 735–744.

    Article  CAS  Google Scholar 

  4. L. A. Molot, J. J. Hudson, P. J. Dillon and S. A. Miller, Effect of pH on photo-oxidation of dissolved organic carbon by hydroxyl radicals in a coloured, softwater stream. Aquat. Sci., 2005, 67, 189–195.

    Article  CAS  Google Scholar 

  5. R. G. Zepp, J. Hoigné and H. Bader, Nitrate-Induced Photooxidation of Trace Organic Chemicals in Water. Environ. Sci. Technol., 1987, 21, 443–450.

    Article  PubMed  CAS  Google Scholar 

  6. R. G. Zepp, B. C. Faust, J. Hoigné, Hydroxyl Radical Formation in Aqueous Reactions (pH 3–8) of Iron (II) with Hydrogen Peroxide: The Photo-Fenton Reaction. Environ. Sci. Technol., 1992, 26, 313–319.

    Article  CAS  Google Scholar 

  7. E. M. White, P. P. Vaugham and R. G. Zepp, Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States. Aquat. Sci., 2003, 65, 402–414.

    Article  CAS  Google Scholar 

  8. B. Sulzberger, E. Durisch-Kaiser, Chemical characterization of dissolved organic matter (DOM): A prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat. Sci., 2009, 71, 104–126.

    Article  CAS  Google Scholar 

  9. I. Reche, M. L. Pace and J. J. Cole, Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry, 1999, 44, 259–280.

    Google Scholar 

  10. C. Freeman, N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes and J. Hudson, Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 2004, 430, 195–198.

    Article  PubMed  CAS  Google Scholar 

  11. C. Freeman, C. D. Evans, D. T. Monteith, B. Reynolds and N. Fenner, Export of organic carbon from peat soils. Nature, 2001, 412, 785.

    Article  PubMed  CAS  Google Scholar 

  12. K. Pregitzer, D. R. Zak, A. J. Burton, J. A. Ashby and N. W. MacDonald, Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry, 2004, 68, 179–197.

    Article  CAS  Google Scholar 

  13. S. E. G. Findlay, Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition?. Front. Ecol. Environ., 2005, 3, 133–137.

    Article  Google Scholar 

  14. C. D. Evans, P. J. Chapman, J. M. Clark, D. T. Monteith and M. S. Cresser, Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biol., 2006, 12, 2044–2053.

    Article  Google Scholar 

  15. D. T. Monteith, J. L. Stoddard, C. D. Evans, H. de Wit, M. Forsius, T. Høåsen, A. Wilander, B. L. Skjelkvåle, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopáček, J. Veselý, Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 2007, 450, 537–541.

    Article  PubMed  CAS  Google Scholar 

  16. C. D. Evans, J. M. Cullen, C. Alewell, J. Kopáček, A. Marchetto, F. Moldan, A. Prechtel, M. Rogora, J. Veselý and R. Wright, Recovery from acidification in European surface waters. Hydrol. Earth Syst. Sci., 2001, 53, 283–297.

    Article  Google Scholar 

  17. J. L. Stoddard, D. S. Jeffries, A. Lűkewille, T. A. Clair, P. J. Dillon, C. T. Driscoll, M. Forsius, M. Johannessen, J. S. Kahl, J. H. Kellogg, A. Kemp, J. Mannio, D. T. Monteith, P. S. Murdoch, S. Patrick, A. Rebsdorf, B. L. Skjelkvåle, M. P. Stainton, T. Traaen, H. van Dam, K. E. Webster, J. Wieting and A. Wilander, Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 1999, 401, 575–578.

    Article  CAS  Google Scholar 

  18. G. E. Likens, C. T. Driscoll and D. C. Buso, Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science, 1996, 272, 244–246.

    Article  CAS  Google Scholar 

  19. C. P. Cirmo and C. T. Driscoll, The impacts of a watershed CaCO3 treatment on stream and wetland biogeochemistry in the Adirondack Mountains. Biogeochemistry, 1996, 32, 265–297.

    Article  CAS  Google Scholar 

  20. D. A. Burns, The effects of liming an Adirondack lake watershed on downstream water chemistry. Biogeochemistry, 1996, 32, 339–362.

    Article  CAS  Google Scholar 

  21. P. J. Dillon, L. A. Molot and W. A. Sheider, Phosphorus and Nitrogen Export from Forested Stream Catchments in Central Ontario. J. Environ. Qual., 1991, 20, 857–864.

    Article  CAS  Google Scholar 

  22. N. Kelton, L. A. Molot and P. J. Dillon, Spectrofluorometric properties of dissolved organic matter from Central and Southern Ontario streams and the influence of iron and irradiation. Water Res., 2007, 41, 638–646.

    Article  PubMed  CAS  Google Scholar 

  23. P. Porcal, P. J. Dillon and L. A. Molot, Seasonal changes in photochemical properties of dissolved organic matter in small boreal streams. Biogeosciences, 2013, 10, 5533–5543.

    Article  CAS  Google Scholar 

  24. J. F. Escobedo, E. N. Gomes, A. P. Oliveira and J. Soares, Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil. Renew. Energy, 2011, 36, 169–178.

    Article  Google Scholar 

  25. G. W. Petty, A first course in atmospheric radiation, Sundog Publishing, Madison, Wisconsin, USA, 2nd edn, 2006

    Google Scholar 

  26. P. Porcal, A. Amirbahman, J. Kopáček, F. Novák and S. A. Norton, Photochemical release of humic and fulvic acid-bound metals from simulated soil and streamwater. J. Environ. Monit., 2009, 11, 1064–1071.

    Article  PubMed  CAS  Google Scholar 

  27. J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber and K. Mopper, Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr., 2008, 53, 955–969.

    Article  Google Scholar 

  28. A. M. Brown, A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput. Methods Programs Biomed., 2001, 65, 191–200.

    Article  PubMed  CAS  Google Scholar 

  29. C. E. Del Castilo, P. G. Coble, J. M. Morell, J. M. López and J. E. Corredor, Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar. Chem., 1999, 66, 35–51.

    Article  Google Scholar 

  30. K. G. J. Nierop, B. Jansen and J. M. Verstraten, Dissolved organic matter, aluminium and iron interactions: precipitation induced by metal/carbon ratio, pH and competition. Sci. Total Environ., 2002, 300, 201–211.

    Article  PubMed  CAS  Google Scholar 

  31. J. Feng, X. Hu and P. L. Yue, Effect of initial solution pH on the degradation Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Res., 2006, 40, 641–646.

    Article  PubMed  CAS  Google Scholar 

  32. M. S. F. Santos, A. Alves and L. M. Madeira, Paraquat removal from water by oxidation with Fenton’s reagent. Chem. Eng. J., 2011, 175, 279–290.

    Article  CAS  Google Scholar 

  33. S. A. Wathmough, M. C. Eimers, J. Aherne and P. J. Dillon, Climate Effects on Stream Nitrate Concentrations at 16 Forested Catchments in South Central Ontario. Environ. Sci. Technol., 2004, 38, 2383–2388.

    Article  CAS  Google Scholar 

  34. W. Durka, E. Schulze, G. Gebauer and S. Voerkellus, Effects of forest declining on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature, 1994, 372, 765–767.

    Article  CAS  Google Scholar 

  35. J. L. Weishaar, G. R. Aiken, B. A. Bergamashi, M. S. Fram, R. Fujii and K. Mopper, Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol., 2003, 37, 4702–4708.

    Article  PubMed  CAS  Google Scholar 

  36. P. J. Dillon and L. A. Molot, Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron, and total phosphorus: The Dorset, Ontario, study, 1978–1998. J. Geophys. Res., [Atmos.], 2005, 110, G01002 10.1029/2004JG000003.

    Article  CAS  Google Scholar 

  37. T. Brinkmann, D. Sartorius and F. H. Frimmel, Photobleaching of humic rich dissolved organic matter. Aquat. Sci., 2003, 65, 415–424.

    Article  CAS  Google Scholar 

  38. C. Minero, S. Chiron, G. Falletti, V. Maurino, E. Pelizzetti, R. Ajassa, M. E. Carlotti and D. Vione, Photochemical processes involving nitrite in surface water samples. Aquat. Sci., 2007, 69, 71–85.

    Article  CAS  Google Scholar 

  39. M. Tedetti, F. Joux, B. Charrière, K. Mopper, R. Sempéré, Contrasting effects of solar radiation and nitrates on the bioavailability of dissolved organic matter to marine bacteria. J. Photochem. Photobiol., A, 2009, 201, 243–247.

    Article  CAS  Google Scholar 

  40. W. R. Haag, J. Hoigné, Photo-sensitized oxidation in natural-water via OH radicals. Chemosphere, 1985, 14, 1659–1671.

    Article  CAS  Google Scholar 

  41. H. Gao and R. G. Zepp, Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environ. Sci. Technol., 1998, 32, 2940–2946.

    Article  CAS  Google Scholar 

  42. W. Stumm and J. J. Morgan, Aquatic chemistry: chemical equilibria and rates in natural waters, John Wiley & Sons, Inc, 1996

    Google Scholar 

  43. B. M. Voelker, F. M. M. Morel and B. Sulzberger, Iron Redox Cycling in Surface Waters: Effects of Humic Substances and Light. Environ. Sci. Technol., 1997, 31, 1004–1011.

    Article  CAS  Google Scholar 

  44. C. Luider, E. Petticrew and P. J. Curtis, Scavenging of dissolved organic matter (DOM) by amorphous iron hydroxide particles Fe(OH)3(s). Hydrobiologia, 2003, 494, 37–41.

    Article  CAS  Google Scholar 

  45. J. Kopáček, M. Marešová, S. A. Norton, P. Porcal, J. Veselý, Photochemical source of metals for sediments. Environ. Sci. Technol., 2006, 40, 4455–4459.

    Article  PubMed  CAS  Google Scholar 

  46. J. R. Helms, J. Mao, K. Schmidt Rohr, H. Abdulla and K. Mopper, Photochemical flocculation of terrestrial dissolved organic matter and iron. Geochim. Cosmochim. Acta, 2013, 121, 398–413.

    Article  CAS  Google Scholar 

  47. A. J. Stewart and R. G. Wetzel, Dissolved humic materials: Photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. Arch. Hydrobiol., 1981, 92, 265–286.

    CAS  Google Scholar 

  48. E. G. Mariquit, C. Salim and H. Hinode, The Role of Calcium Ions in the Photocatalytic Oxidation of Humic Acid at Neutral pH. Ann. N. Y. Acad. Sci., 2008, 1140, 389–393.

    Article  PubMed  CAS  Google Scholar 

  49. L. A. Molot, W. Keller, P. R. Leavitt, R. D. Robarts, M. J. Waiser, M. T. Arts, T. A. Clair, R. Pienitz, N. D. Yan, D. K. McNicol, Y. T. Prairie, P. J. Dillon, M. Macrae, R. Bello, R. N. Nordin, P. J. Curtis, J. P. Smol and M. S. V. Douglas, Risk analysis of dissolved organic carbon-mediated UVB exposure in Canadian inland waters. Can. J. Fish. Aquat. Sci., 2004, 61, 2511–2521.

    Article  CAS  Google Scholar 

  50. L. A. Molot, Color of Aquatic Ecosystems, in Encyclopedia of Inland Waters, ed. G. E. Likens, Elsevier, 2009, vol. 2, pp. 657–663.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Porcal.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00011k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcal, P., Dillon, P.J. & Molot, L.A. Interaction of extrinsic chemical factors affecting photodegradation of dissolved organic matter in aquatic ecosystems. Photochem Photobiol Sci 13, 799–812 (2014). https://doi.org/10.1039/c4pp00011k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00011k

Navigation