Skip to main content
Log in

Effect of metal nanoparticles on the photophysical behaviour of dye—silica conjugates

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fluorescein has been covalently entrapped into 120 nm silica beads in order to measure the effect of plasmonic gold nanoparticles, having 25 nm diameter, on the radiative processes of the dye. Two distinct regimes of enhancement and quenching of fluorescein emission have been observed, depending on the concentration of the metal adsorbed on the silica surface and the overlap between the SPR and the fluorescein spectra. At particle concentrations below 5.0 × 1013 nanoparticles mL−1, the fluorescence of the dye is enhanced, and this effect is more pronounced when the excitation wavelength matches the maximum of the extinction spectrum of the gold nanoparticles. When the concentration of gold is further increased, quenching occurs and it has been attributed to the SPR shift following the aggregation of the gold colloids on the silica surface. The invariance of the fluorescence lifetimes during the whole process indicates that the mechanism of fluorophore—nanoparticle interaction is mainly based on changes in the absorption efficiency of the organic dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bardhan, S. Lal, A. Joshi, N. J. Halas, Theranostic nanoshells: from probe design to imaging and treatment of cancer, Acc. Chem. Res., 2011, 44, 936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J. E. Lee, N. Lee, T. Kim, J. Kim, T. Hyeon, Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications, Acc. Chem. Res., 2011, 44, 893.

    Article  CAS  PubMed  Google Scholar 

  3. V. P. Torchilin, Multifunctional nanocarriers, Adv. Drug Delivery Rev., 2012, 64S, 302.

    Article  Google Scholar 

  4. D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, I. C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis, Chem. Soc. Rev., 2012, 41, 2656.

    Article  CAS  PubMed  Google Scholar 

  5. J. Kao, K. Thorkelsson, P. Bai, B. J. Rancatore, T. Xu, Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules, Chem. Soc. Rev., 2013, 42, 2654.

    Article  CAS  PubMed  Google Scholar 

  6. K. Yan, P. Li, H. Zhu, Y. Zhou, J. Ding, J. Shen, Z. Li, Z. Xu, P. K. Chu, Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment, RSC Adv., 2013, 3, 10598.

    Article  CAS  Google Scholar 

  7. S. Eustis, M. A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev., 2006, 35, 209.

    Article  CAS  PubMed  Google Scholar 

  8. H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu, F. Tang, Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity, Angew. Chem., Int. Ed., 2011, 50, 891.

    Article  CAS  Google Scholar 

  9. W. Deng, F. Xie, H. T. Baltar, E. M. Goldys, Metal-enhanced fluorescence in the life sciences: here, now and beyond, Phys. Chem. Chem. Phys., 2013, 15, 15695.

    Article  CAS  PubMed  Google Scholar 

  10. L. Latterini, L. Tarpani, Hierarchical assembly of nanostructures to decouple fluorescence and photothermal effect, J. Phys. Chem. C, 2011, 115, 21098.

    Article  CAS  Google Scholar 

  11. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, N. J. Halas, Fluorescence enhancement by Au nanostructures: nanoshells and nanorods, ACS Nano, 2009, 3, 744.

    Article  CAS  PubMed  Google Scholar 

  12. S. K. Ghosh, A. Pal, S. Kundu, S. Nath, T. Pal, Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles, Chem. Phys. Lett., 2004, 395, 366.

    Article  CAS  Google Scholar 

  13. T. Jennings, M. Singh, G. Strouse, Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity, J. Am. Chem. Soc., 2006, 128, 5462.

    Article  CAS  PubMed  Google Scholar 

  14. C. K. Kim, R. R. Kalluru, J. P. Singh, A. Fortner, J. Griffin, G. K. Darbha, P. C. Ray, Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection: studies on size-dependent optical properties, Nanotech., 2006, 17, 3085.

    Article  CAS  Google Scholar 

  15. R. Chhabra, J. Sharma, H. Wang, S. Zou, S. Lin, H. Yan, S. Lindsay, Y. Liu, Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers, Nanotech., 2009, 20, 485201.

    Article  CAS  Google Scholar 

  16. G. Schneider, G. Decher, N. Nerambourg, R. Praho, M. H. Werts, M. Blanchard-Desce, Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes, Nano Lett., 2006, 6, 530.

    Article  CAS  PubMed  Google Scholar 

  17. P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, U. Bach, Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@ SiO2 Core-Shell Nanoparticles, ACS Nano, 2013, 7, 6636.

    Article  CAS  PubMed  Google Scholar 

  18. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett., 2006, 96, 113002.

    Article  PubMed  CAS  Google Scholar 

  19. Y. Chen, K. Munechika, D. S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles, Nano Lett., 2007, 7, 690.

    Article  CAS  PubMed  Google Scholar 

  20. H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, M. Orrit, Thousand-fold Enhancement of Single-Molecule Fluorescence Near a Single Gold Nanorod, Angew. Chem., Int. Ed., 2013, 52, 1217.

    Article  CAS  Google Scholar 

  21. H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, H. Uji-i, Mapping of Surface-Enhanced Fluorescence on Metal Nanoparticles using Super-Resolution Photoactivation Localization Microscopy, ChemPhysChem, 2012, 13, 973.

    Article  CAS  PubMed  Google Scholar 

  22. T. Sen, A. Patra, Resonance energy transfer from Rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy, J. Phys. Chem. C, 2008, 112, 3216.

    Article  CAS  Google Scholar 

  23. S. Bhowmick, S. Saini, V. B. Shenoy, B. Bagchi, Resonance energy transfer from a fluorescent dye to a metal nanoparticle, J. Chem. Phys., 2006, 125, 181102–1.

    Article  PubMed  CAS  Google Scholar 

  24. C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, A. J. Heeger, Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 6297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E. Dulkeith, M. Ringler, T. Klar, J. Feldmann, A. Munoz Javier, W. Parak, Gold nanoparticles quench fluorescence by phase induced radiative rate suppression, Nano Lett., 2005, 5, 585.

    Article  CAS  PubMed  Google Scholar 

  26. M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, The “lightning” gold nanorods: fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett., 2000, 317, 517.

    Article  CAS  Google Scholar 

  27. J. R. Lakowicz, Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission, Anal. Biochem., 2005, 337, 171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O. Muskens, V. Giannini, J. Sanchez-Gil, J. Gomez Rivas, Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas, Nano Lett., 2007, 7, 2871.

    Article  CAS  PubMed  Google Scholar 

  29. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photonics, 2009, 3, 654.

    Article  CAS  Google Scholar 

  30. J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 1951, 11, 55.

    Article  Google Scholar 

  31. A. Van Blaaderen, A. Imhof, W. Hage, A. Vrij, Three-dimensional imaging of submicrometer colloidal particles in concentrated suspensions using confocal scanning laser microscopy, Langmuir, 1992, 8, 1514.

    Article  Google Scholar 

  32. A. Van Blaaderen, A. Vrij, Synthesis and characterization of monodisperse colloidal organo-silica spheres, J. Colloid Interface Sci., 1993, 156, 1.

    Article  Google Scholar 

  33. D. F. Eaton, International Union of Pure and Applied Chemistry Organic Chemistry Division Commission on Photochemistry. Reference materials for fluorescence measurement, J. Photochem. Photobiol., B, 1988, 2, 523.

    Article  CAS  Google Scholar 

  34. L. Latterini, M. Amelia, Sensing proteins with luminescent silica nanoparticles, Langmuir, 2009, 25, 4767.

    Article  CAS  PubMed  Google Scholar 

  35. Y. S. Liu, P. de Mayo, W. R. Ware, Photophysics of polycyclic aromatic hydrocarbons adsorbed on silica gel surfaces. 3. Fluorescence quantum yields and radiative decay rate constants derived from lifetime distributions, J. Phys. Chem., 1993, 97, 5995.

    Article  CAS  Google Scholar 

  36. A. Imhof, M. Megens, J. J. Engelberts, D. T. N. de Lang, R. Sprik, W. L. Vos, Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres, J. Phys. Chem. B, 1999, 103, 1408.

    Article  CAS  Google Scholar 

  37. A. E. Martell and R. J. Motekaitis, Determination and use of stability constants, Wiley-Vch, New York, 1992.

    Google Scholar 

  38. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate, J. Am. Chem. Soc., 2007, 129, 13939.

    Article  CAS  PubMed  Google Scholar 

  39. R. Sjöback, J. Nygren, M. Kubista, Absorption and fluorescence properties of fluorescein, Spectrochim. Acta, Part A, 1995, 51, L7.

    Article  Google Scholar 

  40. N. Klonis, W. H. Sawyer, Effect of Solvent–Water Mixtures on the Prototropic Equilibria of Fluorescein and on the Spectral Properties of the Monoanion, Photochem. Photobiol., 2000, 72, 179.

    Article  CAS  PubMed  Google Scholar 

  41. N. Rescignano, L. Tarpani, R. Tiribuzi, S. Montesano, S. Martino, L. Latterini, J. M. Kenny, I. Armentano, Protein Encapsulation in Biodegradable Polymeric Nanoparticles: Morphology, Fluorescence Behaviour and Stem Cell Uptake, Macromol. Biosci., 2013, 13, 1204.

    Article  CAS  PubMed  Google Scholar 

  42. S. Aryal, R. BKC, N. Dharmaraj, N. Bhattarai, C. H. Kim, H. Y. Kim, Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles, Spectrochim. Acta, Part A, 2006, 63, 160.

    Article  CAS  Google Scholar 

  43. A. Abraham, A. J. Ilott, J. Miller, T. Gullion, 1H MAS NMR Study of Cysteine-Coated Gold Nanoparticles, J. Phys. Chem. B, 2012, 116, 7771.

    Article  CAS  PubMed  Google Scholar 

  44. W. M. Haynes, D. R. Lide and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013, CRC press, 2012.

    Google Scholar 

  45. G. Acuna, F. Möller, P. Holzmeister, S. Beater, B. Lalkens, P. Tinnefeld, Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas, Science, 2012, 338, 506.

    Article  CAS  PubMed  Google Scholar 

  46. S. K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev., 2007, 107, 4797.

    Article  CAS  PubMed  Google Scholar 

  47. N. J. Halas, S. Lal, W. S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures, Chem. Rev., 2011, 111, 3913.

    Article  CAS  PubMed  Google Scholar 

  48. B. Storti, F. Elisei, S. Abbruzzetti, C. Viappiani, L. Latterini, One-pot synthesis of gold nanoshells with high photon-to-heat conversion efficiency, J. Phys. Chem. C, 2009, 113, 7516.

    Article  CAS  Google Scholar 

  49. S. Mackowski, S. Wörmke, A. J. Maier, T. H. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, C. Bräuchle, Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes, Nano Lett., 2008, 8, 558.

    Article  CAS  PubMed  Google Scholar 

  50. H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells, Angew. Chem., 2010, 122, 2927.

    Article  Google Scholar 

  51. P. Bharadwaj, P. Anger, L. Novotny, Nanoplasmonic enhancement of single-molecule fluorescence, Nanotech., 2007, 18, 044017.

    Article  CAS  Google Scholar 

  52. J. Zhang, Y. Fu, M. H. Chowdhury, J. R. Lakowicz, Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles, Nano Lett., 2007, 7, 2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. E. Hao, G. C. Schatz, Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys., 2004, 120, 357.

    Article  CAS  PubMed  Google Scholar 

  54. D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, A. G. Borisov, Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer, Nano Lett., 2012, 12, 1333.

    Article  CAS  PubMed  Google Scholar 

  55. F. Svedberg, Z. Li, H. Xu, M. Käll, Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation, Nano Lett., 2006, 6, 2639.

    Article  CAS  PubMed  Google Scholar 

  56. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, J. Feldmann, Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches, Nano Lett., 2008, 8, 485.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Latterini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarpani, L., Latterini, L. Effect of metal nanoparticles on the photophysical behaviour of dye—silica conjugates. Photochem Photobiol Sci 13, 884–890 (2014). https://doi.org/10.1039/c3pp50450f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50450f

Navigation