Skip to main content
Log in

Photochemical reduction of CO2 with ascorbate in aqueous solution using vesicles acting as photocatalysts

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report a novel system of visible-light-driven CO2 reduction to CO in an aqueous solution, in which DPPC vesicles dispersed in the solution act as a photocatalyst using ascorbate (HAsc) as an electron source. In the vesicles metal complexes [Ru(dtb)(bpy)2]2+ and Re(dtb)(CO)3Cl (dtb = 4,4′-ditridecyl-2,2′-bipyridyl) are incorporated, which act as a photosensitizer and a catalyst for CO2 reduction, respectively. The reaction is initiated with the reductive quenching of the 3MLCT excited state of the Ru complex with HAsc, followed by an electron transfer from the reduced Ru complex to the Re complex to give a one-electron reduced Re species having catalytic ability for CO2 reduction. In order to search for optimum conditions for the CO production, the dependence of the initial rate of CO formation, vi, on the concentration of the metal complexes and HAsc in the vesicle solution was examined. Consequently, we obtained ∼3.5 μmol h−1 and 190 for vi and the turnover number for CO formation with respect to the Re catalyst, respectively. On the basis of the dependence of vi on the incident light intensity, we have concluded that the photocatalytic reduction of CO2 to CO with HAsc in this system requires only one photon, and propose that HAsc donates an electron not only to the excited state of the Ru complex, but also to the Re–CO2 adduct involved in the catalytic cycle for CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Lehn, and R. Ziessel, Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation, Proc. Natl. Acad. Sci. U. S. A., 1982, 79, 701–704.

    Article  CAS  Google Scholar 

  2. H. Ishida, T. Terada, K. Tanaka, and T. Tanaka, Photochemical CO2 reduction catalyzed by [Ru(bpy)2(CO)2]2+ using triethanolamine and 1-benzyl-1,4-dihydronicotinamide as an electron donor, Inorg. Chem., 1990, 29, 905–911.

    Article  CAS  Google Scholar 

  3. E. Kimura, X. Bu, M. Shionoya, S. Wada, and S. Maruyama, A new nickel(ii) cyclam (cyclam=1,4,8,11-tetraazacyclotetradecane) complex covalently attached to Ru(phen)32+ (phen=1,10-phenanthroline). A new candidate for the catalytic photoreduction of carbon dioxide, Inorg. Chem., 1992, 31, 4542–4546.

    Article  CAS  Google Scholar 

  4. J. Grodkowski, and P. Neta, Ferrous ions as catalysts for photochemical reduction of CO in homogeneous solutions, J. Phys. Chem. A, 2000, 104, 4475–4479.

    Article  CAS  Google Scholar 

  5. J. Hawecker, J.-M. Lehn, and R. Ziessel, Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-bipyridine)tricarbonylchlororhenium(i) and related complexes as homogeneous catalysts, Helv. Chim. Acta, 1986, 69, 1990–2012.

    Article  CAS  Google Scholar 

  6. H. Takeda, and O. Ishitani, Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies, Coord. Chem. Rev., 2010, 254, 346–354.

    Article  CAS  Google Scholar 

  7. H. Hori, F. P. A. Johnson, K. Koike, O. Ishitani, and T. Ibusuki, Efficient photocatalytic CO2 reduction using [Re(bpy)(CO)3P(OEt)3]+, J. Photochem. Photobiol., A, 1996, 96, 171–174.

    Article  CAS  Google Scholar 

  8. K. Koike, S. Naito, S. Sato, Y. Tamaki, and O. Ishitani, Architecture of supramolecular metal complexes for photocatalytic CO2 reduction III: Effects of length of alkyl chain connecting photosensitizer to catalyst, J. Photochem. Photobiol., A, 2009, 207, 109–114.

    Article  CAS  Google Scholar 

  9. A. D. Bangham, Membrane models with phospholipids, Prog. Biophys. Mol. Biol., 1968, 18, 29–95.

    Article  CAS  Google Scholar 

  10. K. Watanabe, S. Takizawa, and S. Murata, Hydrogen generation using a photoinduced electron-transport system with a molecular catalyst in vesicles, Chem. Lett., 2011, 40, 345–347.

    Article  CAS  Google Scholar 

  11. T. Toyota, K. Takakura, Y. Kageyama, K. Kurihara, N. Maru, K. Ohnuma, K. Kaneko, and T. Sugawara, Population study of size and components of self-reproducing giant multilamellar vesicles, Langmuir, 2008, 24, 3037–3044.

    Article  CAS  Google Scholar 

  12. J. N. Robinson, D. J. Cole-Hamilton, Electron transfer across vesicle bilayers, Chem. Soc. Rev., 1991, 20, 49–94.

    Article  CAS  Google Scholar 

  13. T. Mizushima, A. Yoshida, A. Harada, Y. Yoneda, T. Minatani, and S. Murata, Pyrene-sensitized electron transport across vesicle bilayers: dependence of transport efficiency on pyrene substituents, Org. Biomol. Chem., 2006, 4, 4336–4344.

    Article  CAS  Google Scholar 

  14. D. Njus, and P. M. Kelley, The secretory-vesicle ascorbate-regenerating system: a chain of concerted H+/e-transfer reactions, Biochim. Biophys. Acta, 1993, 1144, 235–248.

    Article  CAS  Google Scholar 

  15. B. Shan, T. Baine, X. A. N. Ma, X. Zhao, and R. H. Schmehl, Mechanistic details for cobalt catalyzed photochemical hydrogen production in aqueous solution: Efficiencies of the photochemical and non-photochemical steps, Inorg. Chem., 2013, 52, 4853–4859.

    Article  CAS  Google Scholar 

  16. G. M. Brown, B. S. Brunschwig, C. Creutz, J. F. Endicott, and N. Sutin, Homogeneous catalysis of the photoreduction of water by visible light. Mediation by a tris(2,2-bipyridine)ruthenium(ii)-cobalt(ii) macrocycle system, J. Am. Chem. Soc., 1979, 101, 1298–1300.

    Article  CAS  Google Scholar 

  17. W. R. McNamara, Z. Han, P. J. Alperin, W. W. Brennessel, P. L. Holland, and R. Eisenberg, A cobalt-dithiolene complex for the photocatalytic and electrocatalytic reduction of protons, J. Am. Chem. Soc., 2011, 133, 15368–15371.

    Article  CAS  Google Scholar 

  18. Very recently, MacDonnell and co-workers reported photochemical catalytic CO2 reduction to formate and methanol using ascorbic acid as an electron source: D. J. Boston, C. Xu, D. W. Armstrong, and F. M. MacDonnell, Photochemical reduction of carbon dioxide to methanol and formate in a homogeneous system with pyridinium catalysts, J. Am. Chem. Soc., 2013, 135, 16252–16255.

    Article  CAS  Google Scholar 

  19. B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe, M. Furue, and O. Ishitani, Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: Ruthenium-rhenium bi- and tetranuclear complexes, Inorg. Chem., 2005, 44, 2326–2336.

    Article  CAS  Google Scholar 

  20. S. Sato, K. Koike, H. Inoue, and O. Ishitani, Highly efficient supramolecular photocatalysts for CO2 reduction using visible light, Photochem. Photobiol. Sci., 2007, 6, 454–461.

    Article  CAS  Google Scholar 

  21. L. Rodríguez, M. Ferrer, O. Rossell, F. J. S. Duarte, A. G. Santos, and J. C. Lima, Solvent effects on the absorption and emission of [Re(R2bpy)(CO)3X] complexes and their sensitivity to CO2 in solution, J. Photochem. Photobiol., A, 2009, 204, 174–182.

    Article  Google Scholar 

  22. Z.-Y. Bian, S.-M. Chi, L. Li, and W. Fu, Conjugation effect of the bridging ligand on the CO2 reduction properties in difunctional photocatalysts, Dalton Trans., 2010, 39, 7884–7887.

    Article  CAS  Google Scholar 

  23. C. Bruckmeier, M. W. Lehenmeier, R. Reithmeier, B. Rieger, J. Herranz, and C. Kavakli, Binuclear rhenium(i) complexes for the photocatalytic reduction of CO2, Dalton Trans., 2012, 41, 5026–5037.

    Article  CAS  Google Scholar 

  24. K. Watanabe, K. Moriya, T. Kouyama, A. Onoda, T. Minatani, S. Takizawa, and S. Murata, Photoinduced transmembrane electron transport in DPPC vesicles: Mechanism and application to a hydrogen generation system, J. Photochem. Photobiol., A, 2011, 221, 113–122.

    Article  CAS  Google Scholar 

  25. C. Creutz, N. Sutin, and B. S. Brunschwig, Excite-state photochemistry in the tris(2,2′-bipyridine)ruthenium(ii)-sulfite system, J. Am. Chem. Soc., 1979, 101, 1297–1298.

    Article  CAS  Google Scholar 

  26. D. Rehm, and A. Weller, Kinetics of fluorescence quenching by electron and H-atom transfer, Isr. J. Chem., 1970, 8, 259–271.

    Article  CAS  Google Scholar 

  27. For the calculation of the free-energy change for the photoinduced electron transfer, +0.09 V (vs. SCE) was employed for the oxidation potential of HAsc˙/HAsc (pH 7.0).14 The reduction potential (−1.34 V vs. SCE) and the 3MLCT excited state energy (2.10 eV) of [Ru(dtb)(bpy)2]2+ were estimated by the observed redox potential and phosphorescence spectrum of [Ru(dtb)(bpy)2](PF6)2, respectively.

  28. S. Nojavan, F. Khalilian, F. M. Kiaie, A. Rahimi, A. Arabanian, and S. Chalavi, Extraction and quantitative determination of ascorbic acid during different maturity state of Rosa canina L. fruit, J. Food Compos. Anal., 2008, 21, 300–305.

    Article  CAS  Google Scholar 

  29. J. van Houten, and R. J. Watts, Photochemistry of tris(2,2′-bipyridyl)ruthenium(ii) in aqueous solutions, Inorg. Chem., 1978, 17, 3381–3385.

    Article  Google Scholar 

  30. H. Takeda, K. Koike, H. Inoue, and O. Ishitani, Development of an efficient photocatalytic system for CO2 reduction using rhenium(i) complexes based on mechanistic studies, J. Am. Chem. Soc., 2008, 130, 2023–2031.

    Article  CAS  Google Scholar 

  31. For a calculation of the free-energy change, −0.28 V and +0.40 V (vs. NHE) were employed for the standard redox potentials of CO2/CO32 and Asc/H2Asc,33,34 respectively.

  32. J. P. Collin, and J. P. Sauvage, Electrochemical reduction of carbon dioxide mediated by molecular catalysts, Coord. Chem. Rev., 1989, 93, 245–268.

    Article  CAS  Google Scholar 

  33. E. G. Ball, Studies on oxidation-reduction: XXIII. Ascorbic acid, J. Biol. Chem., 1937, 118, 219–239.

    Article  CAS  Google Scholar 

  34. C. Creutz, The complexities of ascorbate as a reducing agent, Inorg. Chem., 1981, 20, 4449–4452.

    Article  CAS  Google Scholar 

  35. G. Sprintschnik, H. W. Sprintschnik, P. P. Kirsch, and D. G. Whitten, Preparation and photochemical reactivity of surfactant ruthenium(ii) complexes in monolayer assemblies and at water-solid interfaces, J. Am. Chem. Soc., 1977, 99, 4947–4954.

    Article  CAS  Google Scholar 

  36. J. M. Smieja, and C. P. Kubiak, Re(bipy-tBu)(CO)3Cl-improved catalytic activity for carbon dioxide: IR-spectroelectrochemical and mechanistic studies, Inorg. Chem., 2010, 49, 9283–9289.

    Article  CAS  Google Scholar 

  37. D. Kiriya, H.-C. Chang, A. Kamata, and S. Kitagawa, Polytypic phase transition in alkyl chain-functionalized valence tautomeric complexes, Dalton Trans., 2006, 1377–1382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Murata.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp50429h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikuta, N., Takizawa, Sy. & Murata, S. Photochemical reduction of CO2 with ascorbate in aqueous solution using vesicles acting as photocatalysts. Photochem Photobiol Sci 13, 691–702 (2014). https://doi.org/10.1039/c3pp50429h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50429h

Navigation