Skip to main content
Log in

Photochemical studies of a fluorescent chlorophyll catabolite–source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me- sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me- sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me- sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Matile, Biochemistry of Indian summer: physiology of autumnal leaf coloration, Exp. Gerontol. 2000, 35, 145–158.

    Article  CAS  Google Scholar 

  2. C. S. Barry, The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants, Plant Sci. 2009, 176, 325–333.

    Article  CAS  Google Scholar 

  3. S. Hörtensteiner, Chlorophyll Breakdown during Senescence, Annu. Rev. Plant Biol. 2006, 57, 55–77.

    Article  Google Scholar 

  4. B. Kräutler and P. Matile, Solving the riddle of chlorophyll breakdown, Acc. Chem. Res. 1999, 32, 35–43.

    Article  Google Scholar 

  5. B. Kräutler and S. Hörtensteiner, Chlorophyll Breakdown–Chemistry, Biochemistry and Biology, in The Porphyrin Science Handbook, ed. G. C. Ferreira, K. M. Kadish, K. M. Smith, R. Guilard, World Scientific Publishing, USA, 2013, vol.28, pp. 117–185.

    Article  Google Scholar 

  6. B. Kräutler, B. Jaun, K. Bortlik, M. Schellenberg and P. Matile, On the Enigma of Chlorophyll Degradation–the Constitution of a Secoporphinoid Catabolite, Angew. Chem., Int. Ed. 1991, 30, 1315–1318.

    Article  Google Scholar 

  7. S. Moser, T. Müller, M. Oberhuber, B. Kräutler, Chlorophyll catabolites–chemical and structural footprints of a fascinating biological phenomenon, Eur. J. Org. Chem. 2009 21–31.

    Google Scholar 

  8. W. Mühlecker, K. H. Ongania, B. Kräutler, P. Matile, S. Hörtensteiner, Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a ‘fluorescent’ chlorophyll catabolite, Angew. Chem., Int. Ed. Engl. 1997, 36, 401–404.

    Article  Google Scholar 

  9. S. Moser, T. Müller, M.-O. Ebert, S. Jockusch, N. J. Turro, B. Kräutler, Blue luminescence of ripening bananas, Angew. Chem., Int. Ed. 2008, 47, 8954–8957.

    Article  CAS  Google Scholar 

  10. M. Oberhuber, J. Berghold, K. Breuker, S. Hörtensteiner, B. Kräutler, Breakdown of chlorophyll: A nonenzymatic reaction accounts for the formation of the colorless ‘nonfluorescent’ chlorophyll catabolites, Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6910–6915.

    Article  CAS  Google Scholar 

  11. P. Matile, S. Hörtensteiner, H. Thomas, B. Kräutler, Chlorophyll breakdown in senescent leaves, Plant Physiol. 1996, 112, 1403–1409.

    Article  CAS  Google Scholar 

  12. S. Moser, T. Müller, A. Holzinger, C. Lütz, S. Jockusch, N. J. Turro, B. Kräutler, Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 15538–15542.

    Article  CAS  Google Scholar 

  13. M. Oberhuber, J. Berghold, B. Kräutler, Chlorophyll breakdown by a biomimetic route, Angew. Chem., Int. Ed. 2008, 47, 3057–3061.

    Article  CAS  Google Scholar 

  14. S. Banala, S. Moser, T. Müller, C. Kreutz, A. Holzinger, C. Lütz, B. Kräutler, Hypermodified fluorescent chlorophyll catabolites–source of blue luminescence in senescent leaves, Angew. Chem., Int. Ed. 2010, 49, 5174–5177.

    Article  CAS  Google Scholar 

  15. B. Kräutler, S. Banala, S. Moser, C. Vergeiner, T. Müller, C. Lütz and A. Holzinger, A Novel Blue Fluorescent Chlorophyll Catabolite Accumulates in Senescent Leaves of the Peace Lily and Indicates a Split Path of Chlorophyll Breakdown, FEBS Lett. 2010, 584, 4215–4221.

    Article  Google Scholar 

  16. C. Vergeiner, S. Banala, B. Kräutler, Chlorophyll Breakdown in Senescent Banana Leaves: Catabolism Reprogrammed for Biosynthesis of Persistent Blue Fluorescent Tetrapyrroles, Chem.–Eur. J. 2013, 19, 12294–12305.

    Article  CAS  Google Scholar 

  17. S. Moser, T. Müller, A. Holzinger, C. Lütz, B. Kräutler, Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Lay out a Split Path of Chlorophyll Breakdown in a Ripening Fruit, Chem.–Eur. J. 2012, 18, 10873–10885.

    Article  CAS  Google Scholar 

  18. B. Kräutler, Chlorophyll Breakdown and Chlorophyll Catabolites in Leaves and Fruit, Photochem. Photobiol. Sci. 2008, 7, 1114–1120.

    Article  Google Scholar 

  19. B. Christ, I. Süssenbacher, S. Moser, N. Bichsel, A. Egert, T. Müller, B. Kräutler, S. Hörtensteiner, Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis thaliana, Plant Cell 2013, 25, 1868–1880.

    Article  CAS  Google Scholar 

  20. J. V. Morris, M. A. Mahaney and J. R. Huber, Fluorescence Quantum Yield Determinations. 9,10-Diphenylanthracene as a Reference Standard in Different Solvents, J. Phys. Chem. A 1976, 80, 969–974.

    Article  CAS  Google Scholar 

  21. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito, USA, 2010.

    Google Scholar 

  22. R. Schmidt, C. Tanielian, R. Dunsbach and C. Wolff, Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2 sensitization, J. Photochem. Photobiol., A 1994, 79, 11–17.

    Article  CAS  Google Scholar 

  23. K. Apel and H. Hirt, Reactive oxygen species: Metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 2004, 55, 373–399.

    Article  CAS  Google Scholar 

  24. P. R. Ogilby, Singlet oxygen: there is indeed something new under the sun, Chem. Soc. Rev. 2010, 39, 3181–3209.

    Article  CAS  Google Scholar 

  25. R. G. op den Camp, D. Przybyla, C. Ochsenbein, C. Laloi, C. Kim, A. Danon, D. Wagner, E. Hideg, C. Göbel, I. Feussner, M. Nater and K. Apel, Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis, Plant Cell 2003, 15, 2320–2332.

    Article  Google Scholar 

  26. B. Kräutler, W. Mühlecker, M. Anderl and B. Gerlach, Breakdown of chlorophyll: partial synthesis of a putative intermediary catabolite–Preliminary communication, Helv. Chim. Acta 1997, 80, 1355–1362.

    Article  Google Scholar 

  27. J. M. Mach, A. R. Castillo, R. Hoogstraten and J. T. Greenberg, The Arabidopsis accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms, Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 771–776.

    Article  CAS  Google Scholar 

  28. S. Hörtensteiner, The loss of green color during chlorophyll degradation–a prerequisite to prevent cell death?, Planta 2004, 219, 191–194.

    Article  Google Scholar 

  29. L. Echevarria, L. Rodríguez, A. Marcano, O. Estrada, M. Salazar and F. Quintero, Evaluation of photosensitizers singlet oxygen production for photodynamic therapy applications using time resolved thermal lens, Proc. SPIE 2005, 6009, 60090K.

    Article  Google Scholar 

  30. B. Roeder, T. Hanke, S. Oelckers, S. Hackbart and C. Symietz, Photophysical properties of pheophorbide a in solution and in model membrane systems, J. Porphyrins Phthalocyanines 2000, 4, 37–44.

    Article  Google Scholar 

  31. C. Flors and S. Nonell, Light and singlet oxygen in plant defense against pathogens: Phototoxic phenalenone phytoalexins, Acc. Chem. Res. 2006, 39, 293–300.

    Article  CAS  Google Scholar 

  32. R. Ruiz-Gonzalez, J. H. White, M. Agut, S. Nonell and C. Flors, A genetically-encoded photosensitiser demonstrates killing of bacteria by purely endogenous singlet oxygen, Photochem. Photobiol. Sci. 2012, 11, 1411–1413.

    Article  CAS  Google Scholar 

  33. C. Triantaphylidès and M. Havaux, Singlet oxygen in plants: production, detoxification and signaling, Trends Plant Sci. 2009, 14, 219–228.

    Article  Google Scholar 

  34. S. Jockusch, N. J. Turro, E. K. Thompson, M. Gouterman, J. B. Callis and G. E. Khalil, Singlet molecular oxygen by direct excitation, Photochem. Photobiol. Sci. 2008, 7, 235–239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steffen Jockusch or Bernhard Kräutler.

Additional information

Dedicated to the memory of Professor Nicholas J. Turro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jockusch, S., Turro, N.J., Banala, S. et al. Photochemical studies of a fluorescent chlorophyll catabolite–source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen. Photochem Photobiol Sci 13, 407–411 (2014). https://doi.org/10.1039/c3pp50392e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50392e

Navigation