Skip to main content
Log in

Are silicone-supported [C60]-fullerenes an alternative to Ru(ii) polypyridyls for photodynamic solar water disinfection?

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Different photosensitizing materials manufactured by immobilizing (0.5–3.0 g m−2) tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) (RDP2+), [C60]-fullerene, or 1-(4-methyl)-piperazinylfullerene (MPF) on porous neutral (pSil) or surface-modified anionic (pSil) poly(dimethylsiloxane) are compared on the grounds of their singlet molecular oxygen (1O2) production and photodynamic solar water disinfection capability. The C60-based sensitizers display a broad weak absorption in the visible and strong absorption in the UV, while absorption of light by RDP2+ supported on pSil is strong in both the UV and blue regions. The1O2 emission lifetimes (τΔ) determined for RDP2+ and MPF on porous silicone materials under air are similar (40–50 μs) and correspond to the decay of1O2 generated by sensitizers dissolved in the polymer support. In contrast, τΔ measured for C60 in pSil is similar to that observed for MPF or RDP2+ when immobilized at low loading on pSil, but dramatically increases up to 5 ms if C60 aggregates are formed in the porous material as evidenced by microscopy evaluation. The photosensitizing properties of the dyes, together with their electrical charge and the overall charge of the porous silicone-based materials, lead to highly different sunlight-driven bacteria inactivation efficiencies, as tested with waterborne E. faecalis. RDP/pSil provides efficient disinfection by photosensitization unlike MPF/pSil, which leads to reduced bacteria inactivation rates due to poorer1O2 production. C60/pSil and MPF/pSil materials, despite their1O2 photogeneration, show unsuccessful waterborne bacteria inactivation due to the negative surface charge of fullerene aggregates in contact with water, and to the net negative charge of the pSil, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Krasnovsky Jr., Luminescence and Photochemical Studies of Singlet Oxygen Photonics, J. Photochem. Photobiol., A 2008, 196, 210–218.

    Article  CAS  Google Scholar 

  2. R. W. Redmond and I. E. Kochevar, Spatially Resolved Cellular Responses to Singlet Oxygen, Photochem. Photobiol. 2006, 82, 1178–1186.

    Article  CAS  PubMed  Google Scholar 

  3. R. R. Allison, G. H. Downie, R. Cuenca, X. H. Hu, C. J. H. Childs and C. H. Sibata, Photosensitizers in Clinical PDT, Photodiagn. Photodyn. Ther. 2004, 1, 27–42.

    Article  CAS  Google Scholar 

  4. V. Papastamou, T. Nietzsch, H. Staudte, G. Orellana and B. W. Sigusch, Photoinactivation of F. nucleatum and P. gingivalis Using the Ruthenium-Based RD3 Sensitizer and a Conventional Halogen Lamp, Arch. Oral Biol. 2011, 56, 264–268.

    Article  CAS  PubMed  Google Scholar 

  5. S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka and T. Joh, Current States and Future Views in Photodynamic Therapy, J. Photochem. Photobiol., C: Photochem. Rev. 2011, 12, 46–67.

    Article  CAS  Google Scholar 

  6. C. Schweitzer and R. Schmidt, Physical Mechanisms of Generation and Deactivation of Singlet Oxygen, Chem. Rev. 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  7. F. Ronzani, N. Costarramone, S. Blanc, A. K. Benabbou, M. Le Bechec, T. Pigot, M. Oelgemoller and S. Lacombe, Visible-Light Photosensitized Oxidation of α-terpinene Using Novel Silica-Supported Sensitizers: Photooxygenation vs. Photodehydrogenation, J. Catal. 2013, 303, 164–174.

    Article  CAS  Google Scholar 

  8. A. T. Cooper and D. Y. Goswami, Evaluation of Methylene Blue and Rose Bengal for Dye Sensitized Solar Water Treatment, J. Solar Energy Eng. 2002, 124, 305–310.

    Article  CAS  Google Scholar 

  9. M. Jemli, Z. Alouini, S. Sabbahi and M. Gueddari, Destruction of Fecal Bacteria in Wastewater by Three Photosensitizers, J. Environ. Monit. 2002, 4, 511–516.

    Article  CAS  PubMed  Google Scholar 

  10. D. García-Fresnadillo, Y. Georgiadou, G. Orellana, A. M. Braun and E. Oliveros, Singlet-Oxygen (1Δg) Production by Ruthenium(ii) Complexes Containing Polyazaheterocyclic Ligands in Methanol and in Water, Helv. Chim. Acta 1996, 79, 1222–1238.

    Article  Google Scholar 

  11. J. N. Demas and B. A. DeGraff, Design and Applications of Highly Luminescent Transition Metal Complexes, Anal. Chem. 1991, 63, 829–837.

    Article  Google Scholar 

  12. G. Orellana, M. C. Moreno-Bondi, D. García-Fresnadillo and M. D. Marazuela, The Interplay of Indicator, Support and Analyte in Optical Sensor Layers, in Frontiers in Chemical Sensors: Novel Principles and Techniques, ed. G. Orellana and M. C. Moreno-Bondi, Springer Series on Optical Chemical Sensors and Biosensors, Springer, Berlin, Heidelberg, 2005, vol.3, pp. 189–225.

    Article  CAS  Google Scholar 

  13. M. P. Xavier, D. García-Fresnadillo, M. C. Moreno-Bondi and G. Orellana, Oxygen Sensing in Non-Aqueous Media Using Porous Glass with Covalently Bound Luminescent/Ru(ii) Complexes, Anal. Chem. 1998, 70, 5184–5189.

    Article  CAS  Google Scholar 

  14. D. García-Fresnadillo, M. D. Marazuela, M. C. Moreno-Bondi and G. Orellana, Luminescent Nafion Membranes Dyed with Ruthenium(ii) Complexes as Sensing Materials for Dissolved Oxygen, Langmuir 1999, 15, 6451–6459.

    Article  CAS  Google Scholar 

  15. M. E. Jiménez-Hernández, F. Manjón, D. García-Fresnadillo and G. Orellana, Solar Water Disinfection by Oxygen Photogenerated with Polymer-Supported Ru(ii) Sensitizer, Solar Energy 2006, 80, 1382–1387.

    Article  CAS  Google Scholar 

  16. L. Villén, F. Manjón, D. García-Fresnadillo and G. Orellana, Solar Water Disinfection by Photocatalytic Singlet Oxygen Production in Heterogeneous Medium, Appl. Catal., B: 2006, 69, 1–9.

    Article  CAS  Google Scholar 

  17. F. Manjón, L. Villén, D. García-Fresnadillo and G. Orellana, On the Factors Influencing the Performance of Solar Reactors for Water Disinfection with Photosensitized Singlet Oxygen, Environ. Sci. Technol. 2008, 42, 301–307.

    Article  PubMed  CAS  Google Scholar 

  18. F. Manjón, D. García-Fresnadillo and G. Orellana, Water Disinfection with Ru(ii) Photosensitizers Supported on Ionic Porous Silicones, Photochem. Photobiol. Sci. 2009, 8, 926–932.

    Article  PubMed  CAS  Google Scholar 

  19. F. Manjón, M. Santana-Magaña, D. García-Fresnadillo and G. Orellana, Singlet Oxygen Sensitizing Materials Based on Porous Silicone: Photochemical Characterization, Effect of Dye Reloading and Application to Water Disinfection with Solar Reactors, Photochem. Photobiol. Sci. 2010, 9, 838–845.

    Article  PubMed  CAS  Google Scholar 

  20. C. Navntoft, P. Araujo, M. I. Litter, M. C. Apella, D. Fernández, M. E. Puchulu, M. V. Hidalto and M. A. Blesa, Field Tests of the Solar Water Detoxification SOLWATER Reactor in Los Pereyra, Tucumán, Argentina, J. Solar Energy Eng. 2007, 129, 127–134.

    Article  CAS  Google Scholar 

  21. B. Zhou, Y. Lin, B. A. Harruff and Y.-P. Sun, Photoluminescence Properties of Carbon Nanotubes, in Fluorescence of Supermolecules, Polymers, and Nanosystems, ed. M. N. Barberan-Santos, Springer Series on Fluorescence Methods and Applications, Springer, Berlin-Heidelberg, 2008, vol.4, pp. 363–380.

    Article  CAS  Google Scholar 

  22. C. B. Yao, E. Kponou, Y. D. Zhang, J. F. Wang and P. Yuan, Determination of the Triplet State Lifetime of C60/Toluene Solution and C60 Thin Films by Pump-Probe Method, Opt. Photon. J. 2011, 1, 81–84.

    Article  CAS  Google Scholar 

  23. S. Foley, S. Bosi, C. Larroque, M. Prato, J. M. Janot and P. Seta, Photophysical Properties of Novel Water Soluble Fullerene Derivatives, Chem. Phys. Lett. 2001, 350, 198–205.

    Article  CAS  Google Scholar 

  24. M. B. Spesia, M. E. Milanesio and E. N. Durantini, Synthesis, Properties and Photodynamic Inactivation of Escherichia Coli by Novel Cationic Fullerene C60 Derivatives, Eur. J. Med. Chem. 2008, 43, 853–861.

    Article  CAS  PubMed  Google Scholar 

  25. L. Kong and R. G. Zepp, Production and Consumption of Reactive Oxygen Species by Fullerenes, Environ. Toxicol. Chem. 2011, 31, 136–143.

    Article  PubMed  CAS  Google Scholar 

  26. L. Zulian, B. Ruzicka and G. Ruocco, About the Formation of C60 fine Particles with Reprecipitation Method in Ethanol/Carbon Disulfide Mixture, J. Photochem. Photobiol., A 2007, 187, 402–405.

    Article  CAS  Google Scholar 

  27. W.-C. Hou and C. T. Jafvert, Photochemistry of Aqueous C60 Clusters: Evidence of1O2 Formation and its Role in Mediating C60 Phototransformation, Environ. Sci. Technol. 2009, 43, 5257–5262.

    Article  CAS  PubMed  Google Scholar 

  28. R. S. Ruoff, D. S. Tse, R. Malhotra and D. C. Lorents, Solubility of C60 in a Variety of Solvents, J. Phys. Chem. 1993, 97, 3379–3383.

    Article  CAS  Google Scholar 

  29. O. Stoilova, C. Jèrôme, C. Detrembleur, A. Mouithys-Mickalad, N. Manolova, I. Rashkov, R. Jèrôme, New Nanostructured Materials Based on Fullerene and Biodegradable Polyesters, Chem. Mater. 2006, 18, 4917–4923.

    Article  CAS  Google Scholar 

  30. S.-R. Chae, A. R. Badireddy, J. F. Budarz, S. Lin, Y. Xiao, M. Therezien and M. R. Wiesner, Heterogeneities in Fullerene Nanoparticle Aggregates Affecting Reactivity, Bioactivity, and Transport, ACS Nano 2010, 4, 5011–5018.

    Article  CAS  PubMed  Google Scholar 

  31. Z. Markovic and V. Trajkovic, Biomedical Potential of the Reactive Oxygen Species Generation and Quenching by Fullerenes (C60), Biomaterials 2008, 29, 3561–3573.

    Article  CAS  PubMed  Google Scholar 

  32. A. Golub, O. Matyshevska, S. Prylutska, V. Sysoyev, L. Ped, V. Kudrenko, E. Radchenko, Y. Prylutskyy, P. Scharff and T. Braun, Fullerenes Immobilized at Silica Surface: Topology, Structure and Bioactivity, J. Mol. Liq. 2003, 105, 141–147.

    Article  CAS  Google Scholar 

  33. J. Lee, Y. Mackeyev, M. Cho, L. J. Wilson, J.-H. Kim, P. J. J. Álvarez, C60 Aminofullerene Immobilized on Silica as a Visible-Light-Activated Photocatalyst, Environ. Sci. Technol. 2010, 44, 9488–9495.

    Article  CAS  PubMed  Google Scholar 

  34. J. Lee, S. Hong, Y. Mackeyev, C. Lee, E. Chung, L. J. Wilson, J.-H. Kim, P. J. J. Álvarez, Photosensitized Oxidation of Emerging Organic Pollutants by Tetrakis C60 Aminofullerene-Derivatized Silica under Visible Light Irradiation, Environ. Sci. Technol. 2011, 45, 10598–10604.

    Article  CAS  PubMed  Google Scholar 

  35. H. Kim, W. Kim, Y. Mackeyev, G.-S. Lee, H.-J. Kim, T. Tachikawa, S. Hong, S. Lee, J. Kim, L. J. Wilson, T. Majima, P. J. J. Álvarez, W. Choi and J. Lee, Selective Oxidative Degradation of Organic Pollutants by Singlet Oxygen-Mediated Photosensitization: Tin Porphyrin versus C60 Aminofullerene Systems, Environ. Sci. Technol. 2012, 46, 9606–9613.

    Article  CAS  PubMed  Google Scholar 

  36. A. W. Jensen and C. Daniels, Fullerene-Coated Beads as Reusable Catalysts, J. Org. Chem. 2003, 68, 207–210.

    Article  CAS  PubMed  Google Scholar 

  37. T. Carofiglio, P. Donnola, M. Maggini, M. Rossetto and E. Rossi, Fullerene-Promoted Singlet-Oxygen Photochemical Oxygenations in Glass-Polymer Microstructured Reactors, Adv. Synth. Catal. 2008, 350, 2815–2822.

    Article  CAS  Google Scholar 

  38. O. Stoilova, C. Jèrôme, C. Detrembleur, A. Mouithys-Mickalad, N. Manolova, I. Rashkov, R. Jèrôme, C60-Containing Nanostructured Polymeric Materials with Potential Biomedical Applications, Polymer 2007, 48, 1835–1843.

    Article  CAS  Google Scholar 

  39. P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton, H. Gali, T. Sarna and M. R. Hamblin, Functionalized Fullerenes Mediate Photodynamic Killing of Cancer Cells: Type I versus Type II photochemical Mechanism, Free Radicals Biol. Med. 2007, 43, 711–719.

    Article  CAS  Google Scholar 

  40. K. K. Chin, S.-C. Chuang, B. Hernández, L. M. Campos, M. Selke, C. S. Foote, M. A. García-Garibay, Photophysical Properties of Non-Homoconjugated 1,2-dihydro, 1,2,3,4-tetrahydro and 1,2,3,4,5,6-hexahydro-C60 Derivatives, Photochem. Photobiol. Sci. 2008, 7, 49–55.

    Article  CAS  PubMed  Google Scholar 

  41. G. P. Tegos, T. N. Deminova, D. Arcilla-López, H. Lee, T. Wharton, H. Gali and M. R. Hamblin, Cationic Fullerenes Are Effective and Selective Antimicrobial Photosensitizers, Chem. Biol. 2005, 12, 1127–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. H. Goh, S. Y. Lee, Z. H. Lu and C. H. A. Huan, C60-Containing Polymer Complexes: Complexation between Multifunctional 1-(4-methyl)piperazinyl-Fullerene or N-[(2- piperidyl)ethyl]aminofullerene and Proton-Donating Polymers, Macromol. Chem. Phys. 2000, 201, 1037–1047.

    Article  CAS  Google Scholar 

  43. http://www.bionicsurfaces.de.

  44. S. Jockusch, J. Sivaguru, N. J. Turro and V. Ramamurthy, Direct Measurement of the Singlet Oxygen Lifetime in Zeolites by Near-IR Phosphorescence, Photochem. Photobiol. Sci. 2005, 4, 403–405.

    Article  CAS  PubMed  Google Scholar 

  45. M. K. Nissen, S. M. Wilson and M. L. W. Thewalt, Highly Structured Singlet Oxygen Photoluminescence from Crystalline C60, Phys. Rev. Lett. 1992, 69, 2423–2426.

    Article  CAS  PubMed  Google Scholar 

  46. J. Wang, J. Leng, H. Yang, G. Sha and C. Zhang, Long-Lifetime and Asymmetric Singlet Oxygen Photoluminescence from Aqueous Fullerene Suspensions, Langmuir 2013, 29, 9051–9056.

    Article  CAS  PubMed  Google Scholar 

  47. M. G. Lagorio, E. San Román, How Does Light Scattering Affect Luminescence?, J. Chem. Educ. 2002, 79, 1362–1367.

    Article  CAS  Google Scholar 

  48. D. E. Wetzler, D. García-Fresnadillo, G. Orellana and A. Clean, Well-Defined Solid System for Photosensitized1O2 Production Measurements, Phys. Chem. Chem. Phys. 2006, 8, 2249–2256.

    Article  CAS  PubMed  Google Scholar 

  49. D. Y. Lyon, L. Brunet, G. W. Hinkal, M. R. Wiesner and P. J. J. Alvarez, Antibacterial Activity of Fullerene Water Suspensions (nC60) Is Not Due to ROS-Mediated Damage, Nano Lett. 2008, 8, 1539–1543.

    Article  CAS  PubMed  Google Scholar 

  50. A. Jiménez-Banzo, X. Ragàs, P. Kapusta and S. Nonell, Time-Resolved Methods in Biophysics. 7. Photon Counting vs. Analog Time-Resolved Singlet Oxygen Phosphorescence Detection, Photochem. Photobiol. Sci. 2008, 7, 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  51. W. J. Li and W. J. Liang, Loss of Characteristic Absorption Bands of C60 Conjugation Systems in the Addition with Aliphatic Amines, Spectrochim. Acta, Part A Mol. Spectrosc. 2007, 67, 1346–1350.

    Article  CAS  Google Scholar 

  52. J. López-Gejo, A. A. Martí, M. Ruzzi, S. Jockusch, K. Komatsu, F. Tanabe, Y. Murata and N. J. Turro, Can H2 Inside C60 Communicate with the Outside World?, J. Am. Chem. Soc. 2007, 129, 14554–14555.

    Article  PubMed  CAS  Google Scholar 

  53. http://www.sodis.ch.

  54. A. M. Braun, M. T. Maurette and E. Oliveros, Photochemical Technology, Wiley, Chichester, 1991.

    Google Scholar 

  55. S. Deguchi, R. G. Alargova and K. Tsujii, Stable Dispersions of Fullerenes, C60 and C70, in Water. Preparation and Characterization, Langmuir 2001, 17, 6013–6017.

    Article  CAS  Google Scholar 

  56. L. Juha, V. Hamplova, Z. Pokorna, J. Kodymova, O. Spalek, J. Krasa, K. Lang, P. Kubat, F. P. Boody, E. Koudoumas, S. Couris, I. Stibor, T. Gareis, O. Kothe and J. Daub, Proc.–Electrochem. Soc. 1997, 97–14, 56–69.

    Google Scholar 

  57. I. V. Bagrov, I. M. Belousova, A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov and E. N. Sosnov, A Jet-Type Singlet Oxygen Generator Based on Porous Fullerene-Containing Structures, Opt. Spectrosc. 2012, 112, 935–942.

    Article  CAS  Google Scholar 

  58. G. Accorsi and N. Armaroli, Taking Advantage of the Electronic Excited States of [60]-Fullerenes, J. Phys. Chem. C 2010, 114, 1385–1403.

    Article  CAS  Google Scholar 

  59. M. Wang, S. Maragani, L. Huang, S. Jeon, T. Canteenwala, M. R. Hamblin and L. Y. Chiang, Synthesis of Decacationic [60]Fullerene Decaiodides Giving Photoinduced Production of Superoxide Radicals and Effective PDT-Mediation on Antimicrobial Photoinactivation, Eur. J. Med. Chem. 2013, 63, 170–184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Orellana.

Additional information

This paper is dedicated to the memory of Nick J. Turro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjón, F., Santana-Magaña, M., García-Fresnadillo, D. et al. Are silicone-supported [C60]-fullerenes an alternative to Ru(ii) polypyridyls for photodynamic solar water disinfection?. Photochem Photobiol Sci 13, 397–406 (2014). https://doi.org/10.1039/c3pp50361e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50361e

Navigation