Skip to main content
Log in

Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)—silver(shell) nanoparticles and their surface-enhanced Raman scattering properties

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fabrication of dense two-dimensional assemblies consisting of gold(core)—silver(shell) nanoparticles and the resulting peculiar surface-enhanced Raman scattering (SERS) activity are reported. The assemblies were prepared via assembly at air—toluene interfaces by drop-casting toluene solutions containing the nanoparticles protected with octadecylamine molecules onto glass plates. This simple process, which does not require special apparatus or significant fabrication time, leads to uniform assemblies over vast areas (∼34 cm2). In the SERS measurements, the high spatial reproducibility of the SERS signals from p-aminothiophenol adsorbed on the assemblies over vast areas demonstrates that this method is useful for the quantitative investigation of SERS mechanisms. Under 532 nm laser excitation, the difference in the enhancement factors of the SERS signals at the a1 mode between assemblies consisting of gold, silver, and core—shell nanoparticles can be explained by the degree of overlap of the excitation wavelength with their plasmon coupling modes. In contrast, under 785 nm excitation, even though the plasmon band of the core—shell nanoparticle assemblies does not significantly overlap with the excitation wavelength as compared with that of gold nanoparticle assemblies, the enhancement factor from the core—shell nanoparticle assemblies was stronger than those from the gold nanoparticle assemblies. Therefore, we have demonstrated that the gold(core)—silver(shell) nanoparticle assemblies are excellent SERS active materials, which have strong electromagnetic mechanism (EM) as well as chemical mechanism (CM) effects due to the silver shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. Fleischmann, P. J. Hendra, A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett., 1974, 26, 163–166.

    Article  CAS  Google Scholar 

  2. D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, R. P. Van Duyne, In vivo glucose measurement by surface-enhanced Raman spectroscopy, Anal. Chem., 2006, 78, 7211–7215.

    Article  CAS  PubMed  Google Scholar 

  3. S. Nie and S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, 1997, 275, 1102–1106.

    Article  CAS  PubMed  Google Scholar 

  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari and M. S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett., 1997, 78, 1667–1670.

    Article  CAS  Google Scholar 

  5. A. M. Michaels, J. Jiang and L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules, J. Phys. Chem. B, 2000, 104, 11965–11971.

    Article  CAS  Google Scholar 

  6. L. Brus, Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy, Acc. Chem. Res., 2008, 41, 1742–1749.

    Article  CAS  PubMed  Google Scholar 

  7. A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev., 1998, 27, 241–250.

    Article  CAS  Google Scholar 

  8. R. Que, M. Shao, S. Zhuo, C. Wen, S. Wang, S.-T. Lee, Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly, Adv. Funct. Mater., 2011, 21, 3337–3343.

    Article  CAS  Google Scholar 

  9. H. Wang, S. Levin and N. J. Halas, Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates, J. Am. Chem. Soc., 2005, 127, 14992–14993.

    Article  CAS  PubMed  Google Scholar 

  10. W. Lee, S. Y. Lee, R. M. Brider and O. Rabin, Self-assembled SERS substrates with tunable surface plasmon resonances, Adv. Funct. Mater., 2011, 21, 3424–3429.

    Article  CAS  Google Scholar 

  11. V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant and M. Rothschild, A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates, Adv. Mater., 2010, 22, 4298–4302.

    Article  CAS  PubMed  Google Scholar 

  12. Q. Shao, R. Que, L. Cheng and M. Shao, Fast one-step silicon–hydrogen bond assembly of silver nanoparticles as excellent surface-enhanced Raman scattering substrates, RSC Adv., 2012, 2, 1762–1764.

    Article  CAS  Google Scholar 

  13. C. A. Smyth, I. Mirza, J. G. Lunney, E. M. McCabe, Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition, Appl. Surf. Sci., 2013, 264, 31–35.

    Article  CAS  Google Scholar 

  14. X. Ke, B. Lu, J. Hao, J. Zhang, H. Qiao, Z. Zhang, C. Xing, W. Yang, B. Zhang and J. Tang, Facile fabrication of SERS arrays through galvanic replacement of silver onto electrochemically deposited copper micropatterns, ChemPhysChem, 2012, 13, 3786–3789.

    Article  CAS  PubMed  Google Scholar 

  15. J.-C. Bian, Z.-D. Chen, Z. Li, F. Yang, H.-Y. He, J. Wang, J. Z. Y. Tan, J.-L. Zeng, R.-Q. Peng, X.-W. Zhang, G.-R. Han, Electrodeposition of hierarchical Ag nanostructures on ITO glass for reproducible and sensitive SERS application, Appl. Surf. Sci., 2012, 258, 6632–6636.

    Article  CAS  Google Scholar 

  16. G. Haran, Single-molecule Raman spectroscopy: A probe of surface dynamics and plasmonic fields, Acc. Chem. Res., 2010, 43, 1135–1143.

    Article  CAS  PubMed  Google Scholar 

  17. J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne, Probing the structure of single-molecule surface-enhanced Raman scattering hot spots, J. Am. Chem. Soc., 2008, 130, 12616–12617.

    Article  CAS  PubMed  Google Scholar 

  18. G. Braun, I. Pavel, A. R. Morrill, D. S. Seferos, G. C. Bazan, N. O. Reich and M. Moskovits, Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots, J. Am. Chem. Soc., 2007, 129, 7760–7761.

    Article  CAS  PubMed  Google Scholar 

  19. A. Chen, A. E. DePrince III, A. Demortiére, A. Joshi-Imre, E. V. Shevchemko, S. K. Gray, U. Welp, V. K. Vlasko-Vlasov, Self-assembled large Au nanoparticle arrays with regular hot spots for SERS, Small, 2011, 7, 2365–2371.

    Article  CAS  PubMed  Google Scholar 

  20. S. Yun, M. K. Oh, S. K. Kim and S. Park, Linker-molecule-free gold nanorod films, Effect of nanorod size on surface enhanced Raman scattering, J. Phys. Chem. C, 2009, 113, 13551–13557.

    Article  CAS  Google Scholar 

  21. M. Suzuki, Y. Niidome, N. Terasaki, K. Inoue, Y. Kuwahara and S. Yamada, Surface-enhanced nonresonance Raman scattering of rhodamine 6G molecules adsorbed on gold nanorod films, Jpn. J. Appl. Phys., 2004, 43, L554–L556.

    Article  CAS  Google Scholar 

  22. M. A. Mahmoud, C. E. Tabor, M. A. El-Sayed, Surface-enhanced Raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir–Blodgett technique at different surface pressures, J. Phys. Chem. C, 2009, 113, 5493–5501.

    Article  CAS  Google Scholar 

  23. N. Ahamad and A. Ianoul, Using phospholipids to control interparticle distance in SERS-active substrates, J. Phys. Chem. C, 2011, 115, 3587–3594.

    Article  CAS  Google Scholar 

  24. A. Sánchez-Iglesias, P. Aldeanueva-Potel, W. Ni, J. Pérez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, B. N. Mbenkum, L. M. Liz-Marzán, Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates, Nano Today, 2010, 5, 21–27.

    Article  Google Scholar 

  25. T. Arakawa, T. Munaoka, T. Akiyama and S. Yamada, Effects of silver nanoparticles on photoelectrochemical responses of organic dyes, J. Phys. Chem. C, 2009, 113, 11830–11835.

    Article  CAS  Google Scholar 

  26. K. Sugawa and Y. Tanoue, Simple fabrication of two-dimensional self-assemblies consisting of gold and silver nanoparticles at an air/toluene interface and their surface-enhanced Raman scattering activity, Jpn. J. Appl. Phys., 2012, 51, 06FG10.

    Article  Google Scholar 

  27. T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten and H. M. Jaeger, Kinetically driven self assembly of highly ordered nanoparticle monolayers, Nat. Mater., 2006, 5, 265–270.

    Article  CAS  PubMed  Google Scholar 

  28. L. Lu, H. Wang, Y. Zhou, S. Xi, H. Zhang, J. Hu and B. Zhao, Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties, Chem. Commun., 2002, 144–145.

    Google Scholar 

  29. N. R. Jana, Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration, Analyst, 2003, 128, 954–956.

    Article  CAS  Google Scholar 

  30. S. Pande, S. K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda and T. Pal, Synthesis of normal and inverted gold–silver core–shell architectures in β-cyclodextrin and their applications in SERS, J. Phys. Chem. C, 2007, 111, 10806–10813.

    Article  CAS  Google Scholar 

  31. S. Pande, J. Chowhury and T. Pal, Understanding the enhancement mechanisms in the surface-enhanced Raman spectra of the 1,10-phenanthroline molecule adsorbed on a Au@Ag bimetallic nanocolloid, J. Phys. Chem. C, 2011, 115, 10497–10509.

    Article  CAS  Google Scholar 

  32. M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M. Panigrahi and T. Pal, Synthesis of Aucore–Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method, J. Nanopart. Res., 2004, 6, 53–61.

    Article  CAS  Google Scholar 

  33. J. Turkevich, P. C. Stevenson and J. Hiller, A study of the nucleation on and growth processes in the synthesis of colloidal gold, J. Discuss Faraday Soc., 1951, 11, 55–75.

    Article  Google Scholar 

  34. W. Wang, S. Efrima and O. Regev, Directing oleate stabilized nanosized silver colloids into organic phases, Langmuir, 1998, 14, 602–610.

    Article  CAS  Google Scholar 

  35. T. Y. Olson, A. M. Schwartzberg, C. A. Orme, C. E. Talley, B. O’Connell and J. Z. Zhang, Hollow gold-silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering, J. Phys. Chem. C, 2008, 112, 6319–6329.

    Article  CAS  Google Scholar 

  36. K. Sugawa, Y. Tanoue, D. Tanaka and T. Sakai, Facile phase transfer of gold and Au-core/Ag-shell nanoparticles from aqueous to toluene solution using alkylamine molecules and their assemblies on solid supports, Jpn. J. Appl. Phys., 2011, 50, 04DH14.

    Article  Google Scholar 

  37. L.-B. Zhao, R. Huang, Y.-F. Huang, D.-Y. Wu and B. Ren, Photon-driven charge transfer and Herzberg-Teller vibronic coupling mechanism in surface-enhanced Raman scattering of p-aminothiophenol adsorbed on coinage metal surfaces: a density functional theory study, J. Chem. Phys., 2011, 135, 134707.

    Article  PubMed  Google Scholar 

  38. N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault and J. Wenger, Surface enhanced Raman scattering on a single nanometric aperture, J. Phys. Chem. C, 2010, 114, 16250–16256.

    Article  CAS  Google Scholar 

  39. P. M. Jais, D. B. Murray, R. Merlin and A. V. Bragas, Metal nanoparticle ensembles: tunable laser pulses distinguish monomer from dimer vibrations, Nano Lett., 2011, 11, 3685–3689.

    Article  CAS  PubMed  Google Scholar 

  40. P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, O. N. Oliveira and R. F. Aroca, Surface-enhanced Raman scattering on dendrimer/metallic nanoparticle layer-by-layer film substrates, Langmuir, 2005, 21, 5576–5581.

    Article  CAS  PubMed  Google Scholar 

  41. S. Underwood and P. Mulvaney, Effect of the solution refractive index on the color of gold colloids, Langmuir, 1994, 10, 3427–3430.

    Article  CAS  Google Scholar 

  42. M. Fan and A. G. Brolo, Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit, Phys. Chem. Chem. Phys., 2009, 11, 7381–7389.

    Article  CAS  PubMed  Google Scholar 

  43. Y.-F. Huang, D.-Y. Wu, H.-P. Zhu, L.-B. Zhao, G.-K. Liu, B. Ren, Z.-Q. Tian, Surface-enhanced Raman spectroscopic study of p-aminothiophenol, Phys. Chem. Chem. Phys., 2012, 14, 8485–8497.

    Article  CAS  PubMed  Google Scholar 

  44. K. Uetsuki, T. Yano, Y. Saito, T. Ichimura and S. Kawata, Experimental identification of chemical effects in surface enhanced Raman scattering of 4-aminothiophenol, J. Phys. Chem. C, 2010, 114, 7515–7520.

    Article  CAS  Google Scholar 

  45. K. Kim and H. S. Lee, Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper, J. Phys. Chem. B, 2005, 109, 18929–18934.

    Article  CAS  PubMed  Google Scholar 

  46. M. Baia, F. Toderas, L. Baia, J. Popp and S. Astilean, Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles, Chem. Phys. Lett., 2006, 422, 127–132.

    Article  CAS  Google Scholar 

  47. L. Zhang, Self-assembly Ag nanoparticle monolayer film as SERS substrate for pesticide detection, Appl. Surf. Sci., 2013, 270, 292–294.

    Article  CAS  Google Scholar 

  48. W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai and Z. Q. Tian, Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment, Surf. Sci., 1998, 406, 9–22.

    Article  CAS  Google Scholar 

  49. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides and F. Capasso, Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection, Nano Lett., 2009, 9, 1132–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Y. Wang, X. Zou, W. Ren, W. Wang and E. Wang, Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface, J. Phys. Chem. C, 2007, 111, 3259–3265.

    Article  CAS  Google Scholar 

  51. M. Osawa, N. Matsuda, K. Yoshii and I. Uchida, Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution, J. Phys. Chem., 1994, 98, 12702–12707.

    Article  CAS  Google Scholar 

  52. Q. Zhou, Y. Chao, Y. Li, W. Xu, Y. Wu and J. Zheng, Contribution of charge-transfer mechanisms to surface-enhanced Raman scattering with near-IR excitation, ChemPhysChem, 2007, 8, 921–925.

    Article  CAS  PubMed  Google Scholar 

  53. K. Kim and J. K. Yoon, Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle macroscopically smooth Au substrate, J. Phys. Chem. B, 2005, 109, 20731–20736.

    Article  CAS  PubMed  Google Scholar 

  54. W. Ji, Y. Kitahama, X. Xue, B. Zhao and Y. Ozaki, Generation of pronounced resonance profile of charge-transfer contributions to surface-enhanced Raman scattering, J. Phys. Chem. C, 2012, 116, 2515–2520.

    Article  CAS  Google Scholar 

  55. J. R. Lombardi and R. L. Birke, A unified view of surface-enhanced Raman scattering, Acc. Chem. Res., 2009, 42, 734–742.

    Article  CAS  PubMed  Google Scholar 

  56. A. P. Richer, J. R. Lombardi and B. Zhao, Size and wavelength dependence of the charge-transfer contributions to surface-enhanced Raman spectroscopy in Ag/PATP/ZnO junctions, J. Phys. Chem. C, 2010, 114, 1610–1614.

    Article  Google Scholar 

  57. J. R. Lombardi and R. L. Birke, A unified approach to surface-enhanced Raman spectroscopy, J. Phys. Chem. C, 2008, 112, 5605–5617.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Sugawa.

Additional information

Electronic supplementary information (ESI) available: Extinction spectra of colloidal aqueous solution, normalized extinction spectra of colloidal toluene solutions of metal nanoparticles after phase transfer, cross-sectional SEM images of nanoparticle assemblies, and AFM images of the assemblies. See DOI: 10.1039/c3pp50281c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawa, K., Tanoue, Y., Ube, T. et al. Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)—silver(shell) nanoparticles and their surface-enhanced Raman scattering properties. Photochem Photobiol Sci 13, 82–91 (2014). https://doi.org/10.1039/c3pp50281c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50281c

Navigation