Skip to main content
Log in

Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle and A. Mittleman, Photoradiation therapy for the treatment of malignant tumors, Cancer Res., 1978, 38, 2628–2635.

    CAS  PubMed  Google Scholar 

  2. T. J. Dougherty, Photosensitizers: therapy and detection of malignant tumors, Photochem. Photobiol., 1987, 45, 879–889.

    Article  CAS  PubMed  Google Scholar 

  3. B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol., 1992, 55, 145–157.

    Article  CAS  PubMed  Google Scholar 

  4. G. Jori and S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  PubMed  Google Scholar 

  5. M. Wainwright, Photoinactivation of viruses, Photochem. Photobiol. Sci., 2004, 3, 406–411.

    Article  CAS  PubMed  Google Scholar 

  6. A. Juzeniene, Q. Peng and J. Moan, Milestones in the development of photodynamic therapy and fluorescence diagnosis, Photochem. Photobiol. Sci., 2004, 6, 1234–1245.

    Article  Google Scholar 

  7. S. Verma, G. M. Watt, Z. Mal and T. Hasan, Strategies for enhanced photodynamic therapy effects, Photochem. Photobiol., 2007, 83, 996–1005.

    Article  CAS  PubMed  Google Scholar 

  8. J. F. Lovell, T. W. B. Liu, J. Chen and G. Zheng, Activatable photosensitizers for imaging and therapy, Chem. Rev., 2010, 110, 2839–2857.

    Article  CAS  PubMed  Google Scholar 

  9. S. K. Sharma, P. Mroz, T. H. Dai, Y. Y. Huang, T. G. St. Denis and M. R. Hamblin, Photodynamic Therapy for Cancer and for Infections: What Is the Difference?, Isr. J. Chem., 2012, 52, 691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Z. Malik and M. Djaldetti, Destruction of erythroleukemia myelocytic leukemia and Burkitt lymphoma cells by photoactivated protoporphyrin, Int. J. Cancer, 1980, 26, 495–500.

    Article  CAS  PubMed  Google Scholar 

  11. J. P. J. Boegheim, J. W. M. Lagerberg, T. M. A. R. Dubbelman, K. Tijssen, H. J. Tanke, J. Van der Meulen, J. Van Steveninck, Photodynamic effects of HPD on the uptake of rhodamine 123 by mitochondria of intact murine L929 fibroblasts and Chinese hamster ovary K1 cells, Photochem. Photobiol., 1988, 48, 613–620.

    Article  CAS  PubMed  Google Scholar 

  12. M. Paardekooper, P. J. A. Van den Broek, A. W. De Bruijne, J. G. R. Elferink, T. M. A. R. Dubbelman, J. Van Steveninck, Photodynamic treatment of yeast cells with the dye toluidine blue: all-or-none loss of plasma membrane barrier properties, Biochim. Biophys. Acta, 1992, 1108, 86–90.

    Article  CAS  PubMed  Google Scholar 

  13. K. Berg and J. Moan, Lysosomes and microtubules as targets for photochemotherapy of cancer, Photochem. Photobiol., 1997, 65, 403–409.

    Article  CAS  PubMed  Google Scholar 

  14. H. Mojzisova, S. Bonneau and D. Brault, Structural and physico-chemical determinants of the interactions of macrocyclic photosensitizers with cells, Eur. Biophys. J., 2007, 36, 943–953.

    Article  CAS  PubMed  Google Scholar 

  15. D. A. Bellnier and T. J. Dougherty, Membrane lysis in Chinese hamster ovary cells treated with hematoporphyrin derivative plus light, Photochem. Photobiol., 1982, 36, 43–47.

    Article  CAS  PubMed  Google Scholar 

  16. B. W. Henderson and J. M. Donovan, Release of prostaglandin E2 from cells by photodynamic treatment in vitro, Cancer Res., 1989, 49, 6896–6900.

    CAS  PubMed  Google Scholar 

  17. K. G. Specht and M. A. J. Rodgers, Plasma membrane depolarization and calcium influx during cell injury by photodynamic action, Biochim. Biophys. Acta, 1991, 1070, 60–68.

    Article  CAS  PubMed  Google Scholar 

  18. B. Krammer-Reubel, Transmembrane potential measurements of normal and transformed human fibroblasts following photodynamic laser therapy, Bioelectrochem. Bioenerg., 1992, 27, 19–22.

    Article  Google Scholar 

  19. I. E. Kochevar, J. Bouvier, M. Lynch and C. W. Lin, Influence of dye and protein location on photosensitization of the plasma membrane, Biochim. Biophys. Acta-Biomembranes, 1994, 1196, 172–180.

    Article  Google Scholar 

  20. L. Kunz and G. Stark, Photofrin II sensitized modifications of ion transport across the plasma membrane of an epithelial cell line: I. Electrical measurements at the whole-cell level, J. Membr. Biol., 1998, 166, 179–185.

    Article  CAS  PubMed  Google Scholar 

  21. R. Chaloupka, T. Obsil, J. Plasek and F. Sureau, The effect of hypericin and hypocrellin-A on lipid membranes and membrane potential of 3T3 fibroblasts, Biochim. Biophys. Acta-Biomembranes, 1999, 1418, 39–47.

    Article  CAS  Google Scholar 

  22. D. Kessel, R. Luguya and M. G. H. Vicente, Localization and photodynamic efficacy of two cationic porphyrins varying in charge distribution, Photochem. Photobiol., 2003, 78, 431–435.

    Article  CAS  PubMed  Google Scholar 

  23. B. Ehrenberg, E. Gross, Y. Nitzan and Z. Malik, Electric depolarization of photosensitized cells: lipid vs. protein alterations, Biochim. Biophys. Acta, 1993, 1151, 257–264.

    Article  CAS  PubMed  Google Scholar 

  24. S. Ytzhak, J. P. Wuskell, L. M. Loew and B. Ehrenberg, Lipid composition affects the rate of photosensitized dissipation of cross-membrane diffusion potential on liposomes, J. Phys. Chem. B, 2010, 114, 10097–10104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Ytzhak, H. Weitman and B. Ehrenberg, The effect of lipid composition on the permeability of fluorescent markers from photosensitized membranes, Photochem. Photobiol., 2013, 89, 619–624.

    Article  CAS  PubMed  Google Scholar 

  26. http://www.biostatus.com/DRAQ7_s/1836.htm.

  27. S. Iinuma, S. S. Farshi, B. Ortel and T. Hasan, A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin, Br. J. Cancer, 1994, 70, 21–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. X. Wang, P. Wang, W. Tong and Q. Liu, Comparison of pharmacokinetics, intracellular localizations and sonodynamic efficacy of endogenous and exogenous protoporphyrin IX in sarcoma 180 cells, Ultrasonics, 2010, 50, 803–810.

    Article  CAS  PubMed  Google Scholar 

  29. H. Kobuchi, K. Moriya, T. Ogino, H. Fujita, K. Inoue, T. Shuin, T. Yasuda, K. Utsumi and T. Utsumi, Mitochondrial localization of ABC transporter ABCG2 and its function in 5-aminolevulinic acid-mediated protoporphyrin IX accumulation, PLoS One, 2012, 7, e50082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Z. Malik and M. Djaldetti, 5-Aminolevulinic acid stimulation of porphyrin and hemoglobin synthesis by uninduced Friend erythroleukemic cells, Cell Differ., 1979, 8, 223–233.

    Article  CAS  PubMed  Google Scholar 

  31. Z. Malik and H. Lugaci, Selective destruction of erythroleukemic cells by photoactivation of endogenous porphyrins, Br. J. Cancer, 1987, 56, 389–395.

    Article  Google Scholar 

  32. G. Siboni, H. Weitman, D. Freeman, Y. Mazur, Z. Malik, B. Ehrenberg, Photochem. Photobiol. Sci., 2002, 1, 483–491.

    Article  CAS  PubMed  Google Scholar 

  33. G. Denis and T. Nicole, Use of MTT colorimetric assay to measure cell activation, J. Immunol. Methods, 1986, 94, 57–63.

    Article  Google Scholar 

  34. G. Siboni, H. Weitman, D. Freeman, Y. Mazur, Z. Malik and B. Ehrenberg, The correlation between hydrophilicity of hypericins and helianthrone: internalization mechanisms, subcellular distribution and photodynamic action in colon carcinoma cells, Photochem. Photobiol. Sci., 2002, 1, 483–491.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haupt, S., Malik, Z. & Ehrenberg, B. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS. Photochem Photobiol Sci 13, 38–47 (2014). https://doi.org/10.1039/c3pp50189b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50189b

Navigation