Skip to main content
Log in

Skin can control solar UVR-induced mutations through the epidermis-specific response of mutation induction suppression

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Skin exposure to solar ultraviolet radiation (UVR) has been a major public concern because of its genotoxicity. We established recently three action spectra of UVR biological effects using inflammation, mutagenicity, and mutation induction suppression (MIS) as indicators to evaluate UVR risk for mammalian skin. MIS is an antigenotoxic epidermis-specific response by which the increase of the mutant frequency (MF) levels off above a certain UVR dose. Here, based on these spectra, the mutation load of the skin after sunlight exposure was evaluated utilizing the spectral solar-UVR intensity data which had been measured at Tsukuba, Japan by the Japan Meteorological Agency. We estimated the daily variation of the solar-UVR effectiveness (effect per second) for the three indicators, and revealed that the effectiveness efficiency (effect per dose) of midday sunlight is 3–4-fold higher than those in the early morning and late afternoon. Based on the daily variations of mutagenicity and MIS effectiveness, we further estimated MFs induced after every one-hour sunlight exposure and reached a remarkable prediction that MFs should be suppressed to a constant level during 9:00–15:00 by MIS. The estimates agreed well with the equivalent values directly determined at Sendai, a site close to Tsukuba, although a small difference was detected for the epidermis at the dose range where the suppressed MFs were predicted. We propose the use of observed minimum inflammation/erythema doses to improve the difference. Our method could provide reliable estimates of sunlight genotoxicity to evaluate skin cancer probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Parrish, K. F. Jaenicke, R. R. Anderson, Erythema and melanogenesis action spectra of normal human skin, Photochem. Photobiol., 1982, 36, 187–191.

    Article  CAS  Google Scholar 

  2. A. F. McKinlay, B. L. Diffey, A reference action spectrum for ultra-violet induced erythema in human skin, CIE J., 1987, 6, 17–22.

    Google Scholar 

  3. A. Morita, Y. Shintani, E. Nishida, H. Kato, H. Yoshida, M. Minamoto, Y. Yamaguchi, A. Maeda, Feasibility and accuracy of a newly developed hand-held device with a flat-type fluorescent lamp for measuring the minimal erythema dose for narrow-band UVB therapy, Photodermatol. Photoimmunol. Photomed., 2009, 25, 41–44.

    Article  Google Scholar 

  4. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas, S. Madronich, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, 182–198.

    Article  CAS  Google Scholar 

  5. H. Ikehata, S. Higashi, S. Nakamura, Y. Daigaku, Y. Furusawa, Y. Kamei, M. Watanabe, K. Yamamoto, K. Hieda, N. Munakata, T. Ono, Action spectrum analysis of UVR genotoxicity for skin: the border wavelengths between UVA and UVB can bring serious mutation loads to skin, J. Invest. Dermatol., 2013, 133, 1850–1856.

    Article  CAS  Google Scholar 

  6. G. P. Pfeifer, Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment, Photochem. Photobiol., 1997, 65, 270–283.

    Article  CAS  Google Scholar 

  7. H. Ikehata, T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52, 115–125.

    Article  CAS  Google Scholar 

  8. N. M. Wikonkal, D. E. Brash, Ultraviolet radiation induced signature mutations in Photocarcinogenesis, J. Invest. Dermatol. Symp. Proc., 1999, 4, 6–10.

    Article  CAS  Google Scholar 

  9. S. E. Freeman, H. Hacham, R. W. Gange, D. J. Maytum, J. C. Sutherland, B. M. Sutherland, Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 5605–5609.

    Article  CAS  Google Scholar 

  10. A. R. Young, C. A. Chadwick, G. I. Harrison, O. Nikaido, J. Ramsden, C. S. Potten, The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophores for erythema, J. Invest. Dermatol., 1998, 111, 982–988.

    Article  CAS  Google Scholar 

  11. F. R. de Gruijl, H. J. C. M. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, H. Van Weelden, H. Slaper, J. C. Van der Leun, Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1993, 53, 53–60.

    PubMed  Google Scholar 

  12. H. Ikehata, T. Ono, Mutation induction with UVB in mouse skin epidermis is suppressed in acute high-dose exposure, Mutat. Res., 2002, 508, 41–47.

    Article  CAS  Google Scholar 

  13. H. Ikehata, S. Nakamura, T. Asamura, T. Ono, Mutation spectrum in sunlight-exposed skin epidermis: small but appreciable contribution of oxidative stress-induced mutagenesis, Mutat. Res., 2004, 556, 11–24.

    Article  CAS  Google Scholar 

  14. J. A. Gossen, W. J. de Leeuw, C. H. Tan, E. C. Zwarthoff, F. Berends, P. H. M. Lohman, D. L. Knook, J. Vijg, Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 7971–7975.

    Article  CAS  Google Scholar 

  15. G. Seckmeyer, R. L. Mckenzie, Increased ultraviolet radiation in New Zealand (45° S) relative to Germany (48° N), Nature, 1992, 359, 135–137.

    Article  Google Scholar 

  16. N. Munakata, F. Morohoshi, K. Hieda, K. Suzuki, Y. Furusawa, H. Shimura, T. Ito, Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation, Photochem. Photobiol., 1996, 63, 74–78.

    Article  CAS  Google Scholar 

  17. H. Ikehata, R. Okuyama, E. Ogawa, S. Nakamura, A. Usami, T. Mori, K. Tanaka, S. Aiba, T. Ono, Influences of p53 deficiency on the apoptotic response, DNA damage removal and mutagenesis in UVB-exposed mouse skin, Mutagenesis, 2010, 25, 397–405.

    Article  CAS  Google Scholar 

  18. D. E. Godar, Light and death: photons and apoptosis, J. Invest. Dermatol. Symp. Proc., 1999, 4, 17–23.

    Article  CAS  Google Scholar 

  19. C. Pourzand, R. M. Tyrell, Apoptosis, the role of oxidative stress and the example of solar UV radiation, Photochem. Photobiol., 1999, 70, 380–390.

    Article  CAS  Google Scholar 

  20. L. F. Z. Batista, B. Kaina, R. Meneghini, C. F. M. Menck, How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis, Mutat. Res., 2009, 681, 197–208.

    Article  CAS  Google Scholar 

  21. H. E. Johns, M. L. Pearson, C. LeBlanc, C. W. Helleiner, The ultraviolet photochemistry of thymidylyl-(3′ → 5′)-thymidine, J. Mol. Biol., 1964, 9, 503–524.

    Article  CAS  Google Scholar 

  22. J.-S. Taylor, M. P. Cohrs, DNA, light, and Dewar pyrimidones: the structure and biological significance of TpT3, J. Am. Chem. Soc., 1987, 109, 2834–2835.

    Article  CAS  Google Scholar 

  23. R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3363–3366.

    Article  CAS  Google Scholar 

  24. W. A. G. Bruls, H. Slaper, J. C. Van der Leun, L. Berrens, Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths, Photochem. Photobiol., 1984, 40, 485–494.

    Article  CAS  Google Scholar 

  25. I. C. Enninga, R. T. L. Groenendijk, A. R. Filon, A. A. Van Zeeland, J. W. I. M. Simons, The wavelength dependence of UV-induced pyrimidine dimer formation, cell killing and mutation induction in human diploid skin fibroblasts, Carcinogenesis, 1986, 7, 1829–1836.

    Article  CAS  Google Scholar 

  26. C. A. Jones, E. Huberman, M. L. Cunningham, M. J. Peak, Mutagenesis and cytotoxicity in human epithelial cells by far- and near-ultraviolet radiations: action spectra, Radiat. Res., 1987, 110, 244–254.

    Article  CAS  Google Scholar 

  27. R. M. Tyrell, M. Pidoux, Action spectra for human skin cells: estimates of the relative cytotoxicity of the middle ultraviolet, near ultraviolet, and violet regions of sunlight on epidermal keratinocytes, Cancer Res., 1987, 47, 1825–1829.

    Google Scholar 

  28. F. R. de Gruijl, J. C. Van der Leun, Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion, Health Phys., 1994, 67, 319–325.

    Article  Google Scholar 

  29. C. Kielbassa, L. Roza, B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816.

    Article  CAS  Google Scholar 

  30. N. Munakata, S. Kazadzis, A. F. Bais, K. Hieda, G. Rontó, P. Rettberg, G. Horneck, Comparisons of spore dosimetry and spectral photometry of solar-UV radiation at four sites in Japan and Europe, Photochem. Photobiol., 2000, 72, 739–745.

    Article  CAS  Google Scholar 

  31. M. Aoki, Y. Furusawa, S. Higashi, M. Watanabe, Action spectra of apoptosis induction and reproductive cell death in L5178Y cells in the UV-B region, Photochem. Photobiol. Sci., 2004, 3, 268–272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironobu Ikehata.

Additional information

Electronic supplementary information (ESI) available.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikehata, H., Munakata, N. & Ono, T. Skin can control solar UVR-induced mutations through the epidermis-specific response of mutation induction suppression. Photochem Photobiol Sci 12, 2008–2015 (2013). https://doi.org/10.1039/c3pp50158b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50158b

Navigation