Skip to main content
Log in

Erythemal ultraviolet solar radiation doses received by young skiers

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Children are a special group since epidemiological evidence indicates that excessive exposure to sunlight at an early age increases the risk of skin cancer in later life. The purpose of this study is to quantify children’s UV exposure when skiing, using dosimeters (VioSpor) placed on the shoulders of 10 participants. The children received a median daily Standard Erythema Dose of 2.1 within a range of 4.9–0.71, this being approximately 35% of the calculated 24 h ambient UV radiation on the horizontal plane. According to the results obtained, young skiers are exposed to UV radiation that can potentially cause skin damage and erythema and increase the risk of skin cancer in the course of a lifetime. These findings emphasise the need for adequate protective measures against solar radiation when skiing. The results also suggest that sun-protection campaigns should be undertaken aimed at children engaged in outdoor sports, including winter activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. R. Sklar, F. Almutawa, H. W. Lim, I. Hamzavi, Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review, Photochem. Photobiol. Sci., 2013, 12, 54–64.

    Article  CAS  PubMed  Google Scholar 

  2. M. Norval, R. M. Lucas, P. Cullen, F. R. de Gruijl, J. Longstreth, Y. Takizawa, J. C. Van der Leung, The human health effects of ozone depletion and interactions with climate change, Photochem. Photobiol. Sci., 2011, 10, 199–225.

    Article  CAS  PubMed  Google Scholar 

  3. R. Lucas, A. J. McMichael, B. Armstrong, W. Smith, Estimating the global disease burden due to ultraviolet radiation exposure, Int. J. Epidemiol., 2008, 37, 654–667.

    Article  PubMed  Google Scholar 

  4. A. Juzeniene, P. Brekke, A. Dahlback, S. Andersson-Engels, J. Reichrath, K. Moan, M. F. Holick, W. B. Grant, J. Moan, Solar radiation and human health, Rep. Prog. Phys., 2011, 74, 066701, (56pp).

    Article  CAS  Google Scholar 

  5. A. Cabanes, B. Pérez-Gómez, N. Aragonés, M. Pollán and G. López-Abente, La situación del cáncer en España, 1975–2006, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, 2009.

    Google Scholar 

  6. F. Erdmann, J. Lortet-Tieulent, J. Schuz, H. Zeeb, R. Greinert, E. W. Breitbart, F. Bray, International trends in the incidence of malignant melanoma 1953–2008—are recent generations at higher or lower risk, Int. J. Cancer, 2013, 132, 385–400.

    Article  CAS  PubMed  Google Scholar 

  7. C. Garbe, U. Leiter, Melanoma epidemiology and trends, Clin. Dermatol., 2009, 27, 3–9.

    Article  PubMed  Google Scholar 

  8. V. Madan, J. Lear, R. M. Szeimies, Non-melanoma skin cancer, Lancet, 2010, 375, 673–685.

    Article  CAS  PubMed  Google Scholar 

  9. World Health Organization, World Cancer Report 2008, ed. P. Boyle and B. Levin, International Agency for Research on Cancer, Lyon, 2008.

  10. Cáncer en cifras, Centro Nacional de Epidemiología Instituto de Salud Carlos III, Available at http://193.146.50.130/morta/grafs.php#grafs [accessed 15-06-12].

  11. GLOBOCAN 2008. World Health Organization: International Agency for Research on Cancer. Available at http://globocan.iarc.fr/ [accessed 18-06-13].

  12. M. Saraiya, K. Glanz, P. A. Briss, P. Nichols, C. White, D. Das, S. J. Smith, B. Tannor, A. B. Hutchinson, K. M. Wilson, N. Gandhi, N. C. Lee, B. Rimer, R. C. Coates, J. F. Kerner, J. C. Hiatt, P. Buffler, P. Rochester, Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review, Am. J. Prev. Med., 2004, 27, 422–466.

    PubMed  Google Scholar 

  13. Y. Chang, J. H. Barreto, D. T. Bishop, B. K. Armstrong, V. Bataille, W. Bergman, M. Berwick, P. M. Bracci, J. M. Elwood, M. S. Ernstoff, R. P. Gallagher, A. C. Green, N. A. Gruis, E. A. Holly, C. Ingvar, P. A. Kanetsky, M. R. Karagas, T. K. Lee, L. Le Marchand, R. M. Mackie, H. Olsson, A. Østerlind, T. R. Rebbeck, P. Sasieni, V. Siskind, A. J. Swerdlow, L. Titus-Ernstoff, M. S. Zens, J. A. Newton-Bishop, Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls, Int. J. Epidemiol., 2009, 38, 814–830.

    Article  PubMed  Google Scholar 

  14. L. K. Dennis, M. J. VanBeek, L. E. Beane Freeman, B. J. Smith, D. W. Dawson, J. A. Coughlin, Sunburns and risk of cutaneous melanoma, does age matter: a comprehensive meta-analysis, Ann. Epidemiol., 2008, 18 8, 614–627.

    Article  PubMed  Google Scholar 

  15. B. K. Armstrong, A. Kricker, The epidemiology of UV induced skin cancer, J. Photochem. Photobiol., B, 2006, 63, 8–18.

    Article  Google Scholar 

  16. S. Gandini, F. Sera, M. S. Cattaruzza, P. Pasquini, O. Picconi, P. Boyle, C. F. Melchi, Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure, Eur. J. Cancer, 2005, 41 1, 45–60.

    Article  PubMed  Google Scholar 

  17. S. A. Oliveria, M. Saraiya, A. C. Geller, M. K. Heneghan, C. Jorgensen, Sun exposure and risk of melanoma, Arch. Dis. Child., 2006, 91, 131–138.

    Article  CAS  PubMed  Google Scholar 

  18. A. T. Dodd, J. Morelli, S. T. Mokrohisky, N. Asdigian, T. E. Byers, L. A. Crane, Melanocytic Nevi and Sun Exposure in a Cohort of Colorado Children: Anatomic Distribution and Site-Specific Sunburn, Cancer Epidemiol. Biomarkers Prev., 2007, 16 10, 2136–2143.

    Article  PubMed  Google Scholar 

  19. S. K. Balk, the Council on Environmental Health and Section on Dermatology, Ultraviolet Radiation: A Hazard to Children and Adolescents, Pediatrics, 2011, 127, 791–817.

    Article  Google Scholar 

  20. J. R. Wong, J. K. Harris, C. Rodriguez-Galindo, K. J. Johnson, Incidence of Childhood and Adolescent Melanoma in the United States: 1973–2009, Pediatrics, 2013, 131 5, 846–854.

    Article  PubMed  Google Scholar 

  21. M. Jen, M. Murphy, J. M. Grant-Kels, Childhood melanoma, Clin. Dermatol., 2009, 27, 529–536.

    Article  PubMed  Google Scholar 

  22. J. Bauer, T. L. Diepgen, J. Schmitt, Risk factors of incident melanocytic nevi: a longitudinal study in a cohort of 1,232 young German children, Int. J. Cancer, 2005, 115, 121–126.

    Article  CAS  PubMed  Google Scholar 

  23. C. M. Ambros-Rudolph, R. Hofmann, E. Richtig, M. Muller, H. P. Soyer, H. Kerl, Malignant Melanoma in Marathon Runners, Arch. Dermatol., 2006, 142, 1471–1474.

    Article  PubMed  Google Scholar 

  24. E. Richtig, C. M. Ambros-Rudolph, M. Trapp, J. K. Lackner, R. Hofmann-Wellenhof, H. Kerl, G. Schwaberger, Melanoma Markers in Marathon Runners: Increase with Sun Exposure and Physical Strain, Dermatology, 2008, 217, 38–44.

    Article  PubMed  Google Scholar 

  25. H. Williams, J. Brett, A. Du Vivier, Cyclist’s melanoma, J. R. Coll. Physicians London, 1989, 23 2, 114–115.

    CAS  Google Scholar 

  26. V. Lichte, B. Dennenmoser, K. Dietz, H. M. Hafner, B. Schlagenhauff, C. Garbe, J. Fischer, M. Moehrle, Professional risk for skin cancer development in male mountain guides–a cross-sectional study, J. Eur. Acad. Dermatol. Venereol., 2010, 24, 797–804.

    Article  CAS  PubMed  Google Scholar 

  27. N. J. Downs, P. W. Schouten, A. V. Parisi, J. Turner, Measurements of the upper body ultraviolet exposure to golfers: non-melanoma skin cancer risk, and the potential benefits of exposure to sunlight, Photodermatol. Photoimmunol. Photomed., 2009, 25, 317–324.

    Article  PubMed  Google Scholar 

  28. N. J. Downs, A. V. Parisi, P. Schouten, Basal and squamous cell carcinoma risks for golfers: An assessment of the influence of tee time for latitudes in the Northern and Southern hemispheres, J. Photochem. Photobiol., B, 2011, 105, 98–105.

    Article  CAS  Google Scholar 

  29. E. M. Mahé, A. Beauchet, M. de Paula Correa, S. Godin-Beekmann, M. Haeffelin, S. Bruant, et al.Outdoor sports and risk of ultraviolet radiation-related skin lesions in children: evaluation of risks and prevention, Br. J. Dermatol., 2011, 165, 360–367.

    Article  PubMed  Google Scholar 

  30. F. R. de Gruijl, Sufficient Vitamin D from Casual Sun Exposure?, Photochem. Photobiol., 2011, 87, 598–601.

    Article  PubMed  CAS  Google Scholar 

  31. A. R. Webb, R. Kift, J. L. Berry, L. E. Rhodes, The Vitamin D Debate: Translating Controlled Experiments into Reality for Human Sun Exposure Times, Photochem. Photobiol., 2011, 87, 741–745.

    Article  CAS  PubMed  Google Scholar 

  32. M. Norval, A. P. Cullen, F. de Gruijl, J. Longstreth, Y. Takizawa, R. M. Lucas, et al., The effects on human health from stratospheric ozone depletion and its interactions with climate change, Photochem. Photobiol. Sci., 2007, 6, 232–251.

    Article  CAS  PubMed  Google Scholar 

  33. M. T. Kampman, L. H. Steffense, The role of vitamin D in multiple sclerosis, J. Photochem. Photobiol., B, 2010, 101, 137–141.

    Article  CAS  Google Scholar 

  34. A. Zittermann, J. F. Gummert, Sun, vitamin D, and cardiovascular disease, J. Photochem. Photobiol., B, 2010, 101, 124–129.

    Article  CAS  Google Scholar 

  35. W. B. Grant, Relation between prediagnostic serum 25-hydroxyvitamin D level and incidence of breast, colorectal, and other cancers, J. Photochem. Photobiol., B, 2010, 101, 130–136.

    Article  CAS  Google Scholar 

  36. E. M. John, J. Koo, G. G. Schwartz, Sun exposure and prostate cancer risk: evidence for a protective effect of early-life exposure, Cancer Epidemiol. Biomarkers Prev., 2007, 16, 1283–1286.

    Article  PubMed  Google Scholar 

  37. EUROMELANOMA Campaign. Available at http://www.euromelanoma.org/spain/home-1 [accessed 09-04-13].

  38. A. J. Stratigos, A. M. Forsea, R. J. T. Van der Leest, E. de Vries, E. Nagore, J. L. Bulliard, M. Trakatelli, J. Paoli, K. Peris, J. Hercogova, M. Bylaite, T. Maselis, O. Correia, V. del Marmol, Euromelanoma: a dermatology-led European campaign against nonmelanoma skin cancer and cutaneous melanoma. Past, present and future, Br. J. Dermatol., 2012, 167, 99–104.

    Article  PubMed  Google Scholar 

  39. T. B. Fitzpatrick, The validity and practicality of sun-reactive skin types I through VI, Arch. Dermatol., 1988, 124, 869–871.

    Article  CAS  PubMed  Google Scholar 

  40. Biosense Laboratories, Available at http://www.biosense.de/home-e.htm [accessed 16-01-13].

  41. M. A. Serrano, J. Cañada, J. C. Moreno, Erythemal Ultraviolet exposure of cyclists in Valencia, Spain, Photochem. Photobiol., 2010, 86, 716–721.

    Article  CAS  PubMed  Google Scholar 

  42. M. Moehrle, C. Garbe, Personal UV dosymetry by Bacillus subtilis Spore Films, Dermatology, 2000, 200, 1–5.

    Article  CAS  PubMed  Google Scholar 

  43. D. L. O’Riordan, K. Glanz, P. Gies, T. Elliott, A Pilot Study of the Validity of Self-reported Ultraviolet Radiation Exposure and Sun Protection Practices Among Lifeguards, Parents and Children, Photochem. Photobiol., 2008, 84 3, 774–778.

    Article  PubMed  CAS  Google Scholar 

  44. A. Milon, P. E. Sottas, J. L. Bulliard, D. Vernez, Effective exposure to solar UV in building workers: influence of local and individual factors, J. Exposure Sci. Environ. Epidemiol., 2007, 17, 58–68.

    Article  CAS  Google Scholar 

  45. M. A. Serrano, J. Cañada, J. C. Moreno, Erythemal Ultraviolet exposure in two groups of outdoor workers in Valencia, Spain, Photochem. Photobiol., 2009, 85, 1468–1473.

    Article  CAS  PubMed  Google Scholar 

  46. M. A. Serrano, J. Cañada, J. C. Moreno, Ultraviolet exposure for different outdoor sports in Valencia, Spain, Photodermatol. Photoimmunol. Photomed., 2011, 27, 311–317.

    Article  PubMed  Google Scholar 

  47. Y. Furusawa, L. E. Quintern, H. Holtschmidt, P. Koepke, M. Saito, Determination of erythema-effective solar radiation in Japan and Germany with a spore monolayer film optimized for the detection of UVA and UVA–results of a field campaign, Appl. Microbiol. Biotechnol., 1998, 50, 597–603.

    Article  CAS  PubMed  Google Scholar 

  48. N. Munakata, S. Kazadzis, A. F. Bais, K. Hieda, G. Ronto, P. Rettberg, G. Horneck, Comparisons of Spore Dosimetry and Spectral Photometry of Solar-UV Radiation at Four Sites in Japan and Europe, Photochem. Photobiol., 2000, 72 6, 739–745.

    Article  CAS  PubMed  Google Scholar 

  49. C.I.E. Commission Internationale de l’Eclairage. Erythema Reference Action Spectrum and Standard Erythema Dose. CIE S007E-1998. CIE Central Bureau, Vienna, Austria, 1998.

  50. CIE, The International Commission on Illumination. Standard Erythema Dose, a Review. CIE 1997: 125, Vienna.

  51. L. E. Quintern, Y. Furusawa, K. Fukutsu, H. Holtschimdt, Characterization and application of UV detector spore-films: the sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin, J. Photochem. Photobiol., B, 1997, 37, 158–166.

    Article  CAS  Google Scholar 

  52. G. Seckmeyer, B. Mayer and G. Bernhard, The 1997 Status of Solar UV Spectroradiometry in Germany: Results from the National Intercomparison of UV Spectroradiometers, with contributions from A. Albold, W. Baum, K. Dehne, U. Feister, K. Gericke, R. Grewe, C. Gross, H. Sandmann, J. Schreiber, H. K. Seidlitz, M. Steinmetz, S. Thiel, M. Wallasch and M. Weller, Fraunhofer Institute for Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany, 1998, vol. 55, ISBN: 3-8265-3695-9.

  53. OMI/Aura Online Visualization and Analysis. Daily Level 3 Global Gridded Products. Available at http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omi [accessed 28-06-13].

  54. O. Engelsen, A. Kylling, Fast simulation tool for ultraviolet radiation at the Earth’s surface, Opt. Eng., 2005, 44 4, 041012, DOI: 10.1117/1.1885472., available at http://nadir.nilu.no/~olaeng/fastrt/fastrt.html [accessed 02-04-12].

    Article  Google Scholar 

  55. NASA. Ozone Monitoring Instrument. Available at http://ozoneaq.gsfc.nasa.gov/ozone_overhead_all_v8.md [accessed 2-04-12].

  56. J. G. Acker, G. Leptoukh, Online Analysis Enhances Use of NASA Earth Science Data, EOS Trans., AGU, 2007, 88 2, 14–17.

    Article  Google Scholar 

  57. A. R. Webb, O. Engelsen, Calculated Ultraviolet Exposure Levels for a Healthy Vitamin D Status, Photochem. Photobiol., 2006, 82 6, 1697–1703, available at http://nadir.nilu.no/~olaeng/fastrt/vitd_quartmedandmed_v2.html [accessed 02-04-12].

    Article  CAS  PubMed  Google Scholar 

  58. ICNIRP (International Commission on Non-Ionizing Radiation Protection) Global Solar UV Index. ICNIRP-1/95, Oberschleissheim, Germany.

  59. World Health Organization. Global Solar UV Index: A Practical guide, WHO, Geneva, Switzerland, 2002.

    Google Scholar 

  60. OMI UVB Algorithm Documents. Available at http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omuvbd_v003.shtml [accessed 26-06-13].

  61. A. Tanskanen, A. Lindfors, A. Maatta, N. Krotkov, J. Herman, J. Kaurola, T. Koskela, K. Lakkala, V. Fioletov, G. Bernhard, R. McKenzie, Y. Kondo, M. O’Neill, H. Slaper, P. denOuter, A. Bais, J. Tamminen, Validation of daily erythemal doses from ozone monitoring Instrument with groundbased UV measurement data, J. Geophys. Res. [Atmos.], 2007, 112, D24S44, DOI: 10.1029/2007JD008830.

    Article  CAS  Google Scholar 

  62. V. Buchard, C. Brogniez, F. Auriol, B. Bonnel, J. Lenoble, A. Tanskanen, B. Bojkov, P. Veefkind, Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites, Atmos. Chem. Phys., 2008, 8, 4517–4528.

    Article  CAS  Google Scholar 

  63. N. A. Krotkov, J. Herman, P. K. Bhartia, C. Seftor, A. Arola, J. Kaurola, S. Kalliskota, P. Taalas, I. Geogdzhaev, Version 2 TOMS UV algorithm: problems and enhancements, Opt. Eng., 2002, 41, 3028–3039.

    Article  CAS  Google Scholar 

  64. G. Seckmeyer, D. Pissulla, M. Glandorf, D. Henriques, B. Johnsen, A. Webb, A. Siani, A. Bais, B. Kjeldstad, C. Brogniez, J. Lenoble, B. Gardiner, P. Kirsch, T. Koskela, J. Kaurola, B. Uhlmann, H. Slaper, P. den Outer, M. Janouch, P. Werle, J. Grobner, B. Mayer, A. de la Casiniere, S. Simic, F. Carvalho, Variability of UV Irradiance in Europe, Photochem. Photobiol., 2008, 84, 172–179.

    CAS  PubMed  Google Scholar 

  65. K. Vanicek, T. Frei, Z. Litynska and A. Schnalwieser, UV-index for the public, COST-713 Action (UV-B Forecasting), 2000, Brussels, p. 27.

    Google Scholar 

  66. A. Pribullova, M. Chmelik, Effect of altitude and surface albedo variability on global UV:B and total radiation under clear-sky condition, Contrib. Geophys. Geodes., 2005, 35 3, 281–298.

    Google Scholar 

  67. M. B. Blumthaler, W. Ambach, R. Ellinger, Increase in solar UV radiation with altitude, J. Photochem. Photobiol., B, 1997, 39, 130–134.

    Article  CAS  Google Scholar 

  68. Y. Sola, J. Lorente, E. Campmany, X. de Cabo, J. Bech, A. Redan, et al., Altitude effect in UV radiation during the Evaluation of the Effects of Elevation and Aerosols on the Ultraviolet Radiation 2002 (VELETA-2002) field campaign, J. Geophys. Res. [Atmos.], 2008, 113, D23202, DOI: 10.1029/2007JD009742.

    Article  CAS  Google Scholar 

  69. D. A. Schmucki, R. Philipona, UV radiation in the Alps: The altitude effect, Opt. Eng., 2002, 41 12, 3090–3095.

    Article  Google Scholar 

  70. P. Aceituno-Madera, A. Buendía-Eisman, F. J. Olmo, J. J. Jiménez-Monleón, S. Serrano-Ortega, Melanoma, Altitude, and UV-B Radiation, Actas Dermosifiliogr., 2011, 102, 199–205.

    Article  CAS  PubMed  Google Scholar 

  71. S. Rosso, R. Zanetti, M. Pippione, H. Sancho-Garnier, Parallel risk assessment of melanoma and basal cell carcinoma: skin characteristics and sun exposure, Melanoma Res., 1998, 8 6, 573–583.

    Article  CAS  PubMed  Google Scholar 

  72. E. G. Rigel, M. G. Lebwohl, A. C. Rigel, D. S. Rigel, Ultraviolet radiation in Alpine skiing, Arch. Dermatol., 2003, 139, 60–62.

    Article  PubMed  Google Scholar 

  73. A. M. Siani, G. R. Casale, H. Diémoz, G. Agnesod, M. G. Kimlin, C. A. Lang, A. Colosimo, Personal UV exposure in high albedo alpine sites, Atmos. Chem. Phys., 2008, 8, 3749–3760.

    Article  CAS  Google Scholar 

  74. M. Allen, R. McKenzie, Enhanced UV exposure on a ski-field compared with exposures at sea level, Photochem. Photobiol. Sci., 2005, 4, 429–437.

    Article  CAS  PubMed  Google Scholar 

  75. M. Allen and R. McKenzie, UV exposure on New Zealand ski-fields. UV Radiation and its Effects: an update, Royal Society of New Zealand, Miscellaneous Series, Wellington, 2006, vol. 68, pp. 70–71.

    Google Scholar 

  76. P. Weihs, Influence of ground reflectivity and topography on erythemal UV-radiation on inclined surfaces, Int. J. Biometeorol., 2002, 46, 95–104.

    Article  CAS  PubMed  Google Scholar 

  77. A. Oppenrieder, P. Hoeppe, P. Koepke, Routine measurement of erythemally effective UV irradiance on inclined surfaces, J. Photochem. Photobiol., B, 2004, 74, 85–94.

    Article  CAS  Google Scholar 

  78. A. V. Parisi, M. G. Kimlin, Horizontal and sun-normal spectral biologically effective ultraviolet irradiances, J. Photochem. Photobiol., B, 1999, 53, 70–74.

    Article  CAS  Google Scholar 

  79. S. Allinson, M. Asmuss, C. Baldermann, J. Bentzen, D. Buller, N. Gerber, et al., Icnirp: validity and use of the UV index: report from the UVI working group, Schloss Hohenkammer, Germany, 5–7 December 2011, Health Phys., 2012, 103 3, 301–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to María-Antonia Serrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, MA., Cañada, J., Moreno, J.C. et al. Erythemal ultraviolet solar radiation doses received by young skiers. Photochem Photobiol Sci 12, 1976–1983 (2013). https://doi.org/10.1039/c3pp50154j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50154j

Navigation