Skip to main content
Log in

Light-induced tryptophan radical generation in a click modular assembly of a sensitiser-tryptophan residue

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Click chemistry was used as an efficient method to covalently attach a chromophore to an amino acid. Such easily prepared model systems allow for time-resolved studies of one-electron oxidation reactions by the excitation of the chromophore by a laser flash. The model complex ruthenium—tryptophan (Ru—Trp) has been synthesised and studied for its photophysical and electrochemical properties. Despite a small driving force of less than 100 meV, excitation with a laser flash results in fast internal electron transfer leading to the formation of the protonated radical (Trp·H+). At neutral pH electron transfer is followed by deprotonation to form the neutral Trp· radical with the rate depending on the concentration of water acting as the proton acceptor. The formation of the tryptophan radical was confirmed by EPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. L. Dreyer, Experientia, 1984, 40, 653–675.

    Article  CAS  Google Scholar 

  2. J. Stubbe and W. A. van der Donk, Chem. Rev., 1998, 98, 705–762.

    Article  CAS  Google Scholar 

  3. C. Tommos, Philos. Trans. R. Soc. London, Ser. B, 2002, 357, 1383–1394.

    Article  CAS  Google Scholar 

  4. K. Brettel and M. Byrdin, Curr. Opin. Struct. Biol., 2010, 20, 693–701.

    Article  CAS  Google Scholar 

  5. E. Stadtman, Annu. Rev. Biochem., 1993, 62, 797–821.

    Article  CAS  Google Scholar 

  6. K. Westerlund, B. W. Berry, H. K. Privett and C. Tommos, Biochim. Biophys. Acta, 2005, 1707, 103.

    Article  CAS  Google Scholar 

  7. J. J. Warren, M. E. Ener, A. Vlcek Jr, J. R. Winkler and H. B. Gray, Coord. Chem. Rev., 2012, 256, 2478–2487.

    Article  CAS  Google Scholar 

  8. S. Y. Reece and D. G. Nocera, Annu. Rev. Biochem., 2009, 78, 673–699.

    Article  CAS  Google Scholar 

  9. M.-T. Zhang, J. Nilsson and L. Hammarstrom, Energy Environ. Sci., 2012, 5, 7732–7736.

    Article  CAS  Google Scholar 

  10. C. J. Gagliardi, R. A. Binstead, H. H. Thorp and T. J. Meyer, J. Am. Chem. Soc., 2011, 133, 19594–19597.

    Article  CAS  Google Scholar 

  11. M. T. Zhang and L. Hammarström, J. Am. Chem. Soc., 2011, 133, 8806–8809.

    Article  CAS  Google Scholar 

  12. R. Ghanem, Y. Xu, J. Pan, T. Hoffmann, J. Andersson, T. Polívka, T. Pascher, S. Styring, L. Sun and V. Sundström, Inorg. Chem., 2002, 41, 6258–6266.

    Article  CAS  Google Scholar 

  13. H. C. Kolb, M. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004–2021.

    Article  CAS  Google Scholar 

  14. A. Baron, C. Herrero, A. Quaranta, M.-F. Charlot, W. Leibl, B. Vauzeilles and A. Aukauloo, Inorg. Chem., 2012, 51, 5985–5987.

    Article  CAS  Google Scholar 

  15. A. Baron, C. Herrero, A. Quaranta, M.-F. Charlot, W. Leibl, B. Vauzeilles and A. Aukauloo, Chem. Commun., 2011, 47, 11011–11013.

    Article  CAS  Google Scholar 

  16. The reverse possibility, reacting an alkyne-derived ligand with an azide-derived Ru-complex, is hampered by the low stability of the latter.

  17. M. Yu, J. R. Price, P. Jensen, C. J. Lovitt, T. Shelper, S. Duffy, L. C. Windus, V. M. Avery, P. J. Rutledge and M. H. Todd, Inorg. Chem., 2011, 50, 12823–12835.

    Article  CAS  Google Scholar 

  18. I. Choi, Y.-K. Kim, D.-H. Min, S. Lee and W.-S. Yeo, J. Am. Chem. Soc., 2011, 133, 16718–16721.

    Article  CAS  Google Scholar 

  19. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. Von Zelewsky, Coord. Chem. Rev., 1988, 84, 85–277.

    Article  CAS  Google Scholar 

  20. M. Sjödin, S. Styring, H. Wolpher, Y. Xu, L. Sun and L. Hammarström, J. Am. Chem. Soc., 2005, 127, 3855–3863.

    Article  Google Scholar 

  21. A. Harriman, J. Phys. Chem., 1987, 91, 6102–6104.

    Article  CAS  Google Scholar 

  22. M. L. Posener, G. E. Adams, P. Wardman and R. B. Cundall, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 2231–2239.

    Article  CAS  Google Scholar 

  23. S. Solar, N. Getoff, P. S. Surdhar, D. A. Armstrong and A. Singh, J. Phys. Chem., 1991, 95, 3639–3643.

    Article  CAS  Google Scholar 

  24. M. Gutman and E. Nachliel, Biochim. Biophys. Acta, Bioenerg., 1990, 1015, 391–414.

    Article  CAS  Google Scholar 

  25. D. Huppert and E. Kolodney, Chem. Phys., 1981, 63, 401–410.

    Article  CAS  Google Scholar 

  26. S. F. M. van Dongen, R. L. M. Teeuwen, M. Nallani, S. S. van Berkel, J. J. L. M. Cornelissen, R. J. M. Nolte and J. C. M. van Hest, Bioconjugate Chem., 2008, 20, 20–23.

    Article  Google Scholar 

  27. K. L. Kiick, E. Saxon, D. A. Tirrell and C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 19–24.

    Article  CAS  Google Scholar 

  28. M. D. Best, Biochemistry, 2009, 48, 6571–6584.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ally Aukauloo or Winfried Leibl.

Additional information

Electronic supplementary information (ESI) available: Details concerning synthesis, experimental procedures and additional figures mentioned in the text. See DOI: 10.1039/c3pp50021g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheth, S., Baron, A., Herrero, C. et al. Light-induced tryptophan radical generation in a click modular assembly of a sensitiser-tryptophan residue. Photochem Photobiol Sci 12, 1074–1078 (2013). https://doi.org/10.1039/c3pp50021g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50021g

Navigation