Skip to main content
Log in

Role of intersystem crossing in the fluorescence quenching of 2-aminopurine 2’-deoxyriboside in solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 December 2013

This article has been updated

Abstract

2-Aminopurine is a fluorescent probe widely used to study local dynamics as well as charge and energy transfer reactions in DNA/RNA. Despite its broad utilization, the nonradiative relaxation pathways responsible for the variation in its fluorescence quantum yield and fluorescence lifetime in different solvents are still under scrutiny. In this work we use steady-state absorption and emission spectroscopy and broad-band transient absorption covering the time scale from femtoseconds to microseconds to investigate the excited-state dynamics of 2-aminopurine 2’-deoxyriboside (2APdr) in acetonitrile, ethanol, and aqueous buffer solution at pH 7. It is shown that up to ≈40% of the initial excited-state population decays by intersystem crossing to the triplet state depending on the solvent used, thus competing effectively with fluorescence emission. Furthermore, the rate of formation and yield of the triplet state depend sensitively on the hydrogen-donor ability and polarity of the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes and references

  1. D. C. Ward, E. Reich, L. Stryer, Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives, J. Biol. Chem., 1969, 244, 1228–1237.

    Article  CAS  PubMed  Google Scholar 

  2. J. Smagowicz, K. L. Wierzchowski, Lowest excited states of 2-aminopurine, J. Lumin., 1974, 8, 210–232.

    Article  CAS  Google Scholar 

  3. C. E. Crespo-Hernández, B. Cohen, P. M. Hare, B. Kohler, Ultrafast excited-state dynamics in nucleic acids, Chem. Rev., 2004, 104, 1977–2019.

    Article  PubMed  CAS  Google Scholar 

  4. E. L. Rachofsky, R. Osman, J. B. A. Ross, Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence, Biochemistry, 2001, 40, 946–956.

    Article  CAS  PubMed  Google Scholar 

  5. T. M. Nordlund, Sequence, structure and energy transfer in DNA, Photochem. Photobiol., 2007, 83, 625–636.

    Article  CAS  PubMed  Google Scholar 

  6. H.-W. Lee, K. T. Briggs, J. P. Marino, Dissecting structural transition in the HIV-1 dimerization initiation site RNA using 2-aminopurine fluorescence, Methods, 2009, 49, 118–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. Zhao, T. Xia, Probing RNA conformational dynamics and heterogeneity using femtosecond time-resolved fluorescence spectroscopy, Methods, 2009, 49, 128–135.

    Article  CAS  PubMed  Google Scholar 

  8. F. Wachowius, C. Hobartner, Chemical RNA modifications for studies of RNA structure and dynamics, ChemBioChem, 2010, 11, 469–480.

    Article  CAS  PubMed  Google Scholar 

  9. S. O. Kelley, J. K. Barton, Electron transfer between bases in double helical DNA, Science, 1999, 283, 375–381.

    Article  CAS  PubMed  Google Scholar 

  10. C. Wan, T. Fiebig, O. Schiemann, J. K. Barton, A. H. Zewail, Femtosecond direct observation of charge transfer between bases in DNA, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 14052–14055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. A. O’Neill, H.-C. Becker, C. Wan, J. K. Barton, A. H. Zewail, Ultrafast dynamics in DNA-mediated electron transfer: base gating and the role of temperature, Angew. Chem., Int. Ed., 2003, 42, 5896–5900.

    Article  CAS  Google Scholar 

  12. V. Shafirovich, N. E. Geacintov, Proton-coupled electron transfer reactions at a distance in DNA duplexes, Top. Curr. Chem., 2004, 237, 129–157.

    Article  CAS  Google Scholar 

  13. J. C. Genereux, J. K. Barton, Mechanisms for DNA charge transport, Chem. Rev., 2010, 110, 1642–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. C. Genereux, S. M. Wuerth, J. K. Barton, Single-step charge transport through DNA over long distances, J. Am. Chem. Soc., 2011, 133, 3863–3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. D. Raney, L. C. Sowers, D. P. Millar, S. J. Benkovic, A fluorescence-based assay for monitoring helicase activity, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 6644–6648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. W. Frey, L. C. Sowers, D. P. Millar, S. J. Benkovic, The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase, Biochemistry, 1995, 34, 9185–9192.

    Article  CAS  PubMed  Google Scholar 

  17. K. Liebert, A. Hermann, M. Schlickenrieder, A. Jeltsch, Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase, J. Mol. Biol., 2004, 341, 443–454.

    Article  CAS  PubMed  Google Scholar 

  18. D. J. Krosky, F. Song, J. T. Stivers, The origins of high-affinity enzyme binding to an extrahelical DNA base, Biochemistry, 2005, 44, 5949–5959.

    Article  CAS  PubMed  Google Scholar 

  19. T. Lenz, E. Y. M. Bonnist, G. Pljevaljcic, R. K. Neely, D. T. F. Dryden, A. J. Scheidig, A. C. Jones, E. Weinhold, 2-Aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M.TaqI: crystal structures and time-resolved fluorescence, J. Am. Chem. Soc., 2007, 129, 6240–6248.

    Article  CAS  PubMed  Google Scholar 

  20. S. G. Srivatsan, A. A. Sawant, Fluorescent ribonucleoside analogues as probes for investigating RNA structure and function, Pure Appl. Chem., 2011, 83, 213–232.

    Article  CAS  Google Scholar 

  21. A. Broo, A theoretical investigation of the physical reason for the very different luminescence properties of the two isomers adenine and 2-aminopurine, J. Phys. Chem. A, 1998, 102, 526–531.

    Article  CAS  Google Scholar 

  22. E. Nir, K. Kleinermanns, L. Grace, M. S. de Vries, On the photochemistry of purine nucleobases, J. Phys. Chem. A, 2001, 105, 5106–5110.

    Article  CAS  Google Scholar 

  23. L. Serrano-Andrés, M. Merchán, A. C. Borin, Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 8691–8696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. S. Perun, A. L. Sobolewski, W. Domcke, Ab initio studies of the photophysics of 2-aminopurine, Mol. Phys., 2006, 104, 1113–1121.

    Article  CAS  Google Scholar 

  25. K. A. Seefeld, C. Plützer, D. Löwenich, T. Häber, R. Linder, K. Kleinermanns, J. Tatchen, C. M. Marian, Tautomers and electronic states of jet-cooled 2-aminopurine investigated by double resonance spectroscopy and theory, Phys. Chem. Chem. Phys., 2005, 7, 3021–3026.

    Article  CAS  PubMed  Google Scholar 

  26. K. Feng, G. Engler, K. Seefeld, K. Kleinermanns, Dispersed fluorescence and delayed ionization of jet-cooled 2-aminopurine: relaxation to a dark state causes weak fluorescence, ChemPhysChem, 2009, 10, 886–889.

    Article  CAS  PubMed  Google Scholar 

  27. S. Lobsiger, R. K. Sinha, M. Trachsel, S. Leutwyler, Low-lying excited states and nonradiative processes of the adenine analogues 7H- and 9H-2-aminopurine, J. Chem. Phys., 2011, 134, 114307.

    Article  PubMed  CAS  Google Scholar 

  28. K. L. Wierzchowski, K. Berens, A. G. Szabo, Triplet-triplet absorption studies of the intersystem crossing mechanism of 2-aminopurines, J. Lumin., 1975, 10, 331–343.

    Article  CAS  Google Scholar 

  29. T. Fiebig, C. Wan, A. H. Zewail, Femtosecond charge transfer dynamics of a modified DNA base: 2-aminopurine in complexes with nucleotides, ChemPhysChem, 2002, 3, 781–788.

    Article  CAS  PubMed  Google Scholar 

  30. O. F. A. Larsen, I. H. M. van Stokkum, M.-L. Groot, J. T. M. Kennis, R. van Grondelle, H. van Amerongen, Electronic states in 2-aminopurine revealed by ultrafast transient absorption and target analysis, Chem. Phys. Lett., 2003, 371, 157–163.

    Article  CAS  Google Scholar 

  31. G. Kodali, K. A. Kistler, S. Matsika, R. J. Stanley, 2-Aminopurine excited state electronic structure measured by Stark spectroscopy, J. Phys. Chem. B, 2008, 112, 1789–1795.

    Article  CAS  PubMed  Google Scholar 

  32. R. K. Sinha, S. Lobsiger, M. Trachsel, S. Leutwyler, Vibronic spectra of jet-cooled 2-aminopurine·H2O clusters studied by UV resonant two-photon ionization spectroscopy and quantum chemical calculations, J. Phys. Chem. A, 2011, 115, 6208–6217.

    Article  CAS  PubMed  Google Scholar 

  33. R. K. Neely, S. W. Magennis, D. T. F. Dryden, A. C. Jones, Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements, J. Phys. Chem. B, 2004, 108, 17606–17610.

    Article  CAS  Google Scholar 

  34. C. Santhosh, P. C. Mishra, Electronic spectra of 2-aminopurine and 2,6-diaminopurine phototautomerism and fluorescence reabsorption, Spectrochim. Acta, Part A, 1991, 47, 1685–1693.

    Article  Google Scholar 

  35. J. R. Lakowicz, Topics in Fluorescence Spectroscopy. Volume 2. Principles, Plenum Press, New York, 1991.

    Google Scholar 

  36. L. Dodson, R. A. Vogt, C. Reichardt, J. Marks, C. E. Crespo-Hernández, Photophysical and photochemical properties of the pharmaceutical compound salbutamol in aqueous solutions, Chemosphere, 2011, 83, 1513–1523.

    Article  CAS  PubMed  Google Scholar 

  37. H. C. Börresen, The fluorescence of guanine and guanosine. Effects of temperature and viscosity on fluorescence polarization and quenching, Acta Chem. Scand., 1967, 21, 920–936.

    Article  Google Scholar 

  38. C. Reichardt, R. A. Vogt, C. E. Crespo-Hernández, On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons: excited-state dynamics in 1-nitronaphthalene, J. Chem. Phys., 2009, 131, 224518.

    Article  PubMed  CAS  Google Scholar 

  39. T. Nakayama, Y. Amijima, K. Ibuki, K. Hamanoue, Construction of a subpicosecond double-beam laser photolysis system utilizing a femtosecond Ti:sapphire oscillator and three Ti:sapphire amplifiers (a regenerative amplifier and two double passed linear amplifiers), and measurements of the transient absorption spectra by a pump-probe method, Rev. Sci. Instrum., 1997, 68, 4364–4371.

    Article  CAS  Google Scholar 

  40. I. H. M. van Stokkum, D. S. Larsen, R. van Grondelle, Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta, 2004, 1657, 82–104.

    Article  PubMed  CAS  Google Scholar 

  41. I. H. M. van Stokkum, D. S. Larsen, R. van Grondelle, Erratum to “Global and target analysis of time-resolved spectra”, Biochim. Biophys. Acta, 2004, 1658, 262.

    Article  CAS  Google Scholar 

  42. C. Capellos and B. H. J. Bielski, Kinetic Systems, Wiley Interscience, New York, 1972.

    Google Scholar 

  43. R. A. Vogt, T. G. Gray, C. E. Crespo-Hernández, Subpicosecond intersystem crossing in mono- and di-(organophosphine)gold(i) naphthalene derivatives in solution, J. Am. Chem. Soc., 2012, 134, 14808–14817.

    Article  CAS  PubMed  Google Scholar 

  44. I. Carmichael, G. L. Hug, Triplet-triplet absorption spectra of organic molecules in condensed phases, J. Phys. Chem. Ref. Data, 1986, 15, 1–32.

    Article  Google Scholar 

  45. A. R. Horrocks, F. Wilkinson, Triplet state formation efficiencies of aromatic hydrocarbons in solution, Proc. R. Soc. London, Ser. A, 1968, 306, 257–273.

    Article  CAS  Google Scholar 

  46. D. N. Dempster, T. Morrow, M. F. Quinn, Extinction coefficients for triplet-triplet absorption in ethanol solutions of anthracene, naphthalene, 2,5-diphenyloxale, 7-diethylamino-4-methyl coumarin and 4-methyl-7-amino-carbostyril, J. Photochem., 1973/74, 2, 329–341.

    Article  Google Scholar 

  47. A. Singh, Triplet state formation in pulse radiolysis, Radiat. Res. Rev., 1972, 4, 1–69.

    CAS  Google Scholar 

  48. E. Hayon, Yield of ions and excited states produced in the radiolysis of polar organic liquids, J. Chem. Phys., 1970, 53, 2353–2358.

    Article  CAS  Google Scholar 

  49. M. Narayanan, G. Kodali, Y. Xing, R. J. Stanley, Photoinduced electron transfer occurs between 2-aminopurine and the DNA nucleic acid monophosphates: results from cyclic voltammetry and fluorescence quenching, J. Phys. Chem. B, 2010, 114, 10573–10580.

    Article  CAS  PubMed  Google Scholar 

  50. C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, D. M. P. Mingos, Dielectric parameters relevant to microwave dielectric heating, Chem. Soc. Rev., 1998, 27, 213–223.

    Article  CAS  Google Scholar 

  51. M. L. Horng, J. A. Gardecki, A. Papazyan, M. Maroncelli, Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited, J. Phys. Chem., 1995, 99, 17311–17337.

    Article  CAS  Google Scholar 

  52. S. K. Pal, L. Zhao, T. Xia, A. H. Zewail, Site- and sequence-selective ultrafast hydration of DNA, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13746–13751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science Books, Sausalito, CA, 2009.

    Google Scholar 

  54. P. M. Hare, C. E. Crespo-Hernández, B. Kohler, Solvent-dependent photophysics of 1-cyclohexyluracil: ultrafast branching in the initial bright state leads nonradiatively to the electronic ground state and a long-lived 1nπ* state, J. Phys. Chem. B, 2006, 110, 18641–18650.

    Article  CAS  PubMed  Google Scholar 

  55. P. M. Hare, C. E. Crespo-Hernández, B. Kohler, Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 435–440.

    Article  CAS  PubMed  Google Scholar 

  56. W.-M. Kwok, C. Ma, D. L. Phillips, A doorway state leads to photostability or triplet photodamage in thymine DNA, J. Am. Chem. Soc., 2008, 130, 5131–5139.

    Article  CAS  PubMed  Google Scholar 

  57. R. González-Luque, T. Climent, I. González-Ramírez, M. Merchán, L. Serrano-Andrés, Singlet-triplet states interaction regions in DNA/RNA nucleobases hypersurfaces, J. Chem. Theor. Comput., 2010, 6, 2103–2114.

    Article  CAS  Google Scholar 

  58. M. Etinski, T. Fleig, C. M. Marian, Intersystem crossing and characterization of dark states in the pyrimidine nucleobases uracil, thymine, and 1-methylthymine, J. Phys. Chem. A, 2009, 113, 11809–11816.

    Article  CAS  PubMed  Google Scholar 

  59. C. Salet, R. Bensasson, Studies on thymine and uracil triplet excited state in acetonitrile and water, Photochem. Photobiol., 1975, 22, 231–235.

    Article  CAS  PubMed  Google Scholar 

  60. C. Salet, R. Bensasson, R. S. Becker, Triplet excited states of pyrimidine nucleosides and nucleotides, Photochem. Photobiol., 1979, 30, 325–329.

    Article  CAS  Google Scholar 

  61. H. Görner, Transients of uracil and thymine derivatives and the quantum yields of electron ejection and intersystem crossing upon 20 ns photolysis at 248 nm, Photochem. Photobiol., 1990, 52, 935–948.

    Article  PubMed  Google Scholar 

  62. H. Görner, Phosphorescence of nucleic acids and DNA components at 77 K, J. Photochem. Photobiol., B, 1990, 5, 359–377.

    Article  Google Scholar 

  63. J. Cadet and P. Vigny, in Bioorganic Photochemistry, ed. H. Morrison, New York, 1990, pp. 1–272.

  64. C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, B. Kohler, DNA excited-state dynamics: from single bases to the double helix, Annu. Rev. Phys. Chem., 2009, 60, 217–239.

    Article  CAS  PubMed  Google Scholar 

  65. M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, SHARC - ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings, J. Chem. Theor. Comput., 2011, 7, 1253–1258.

    Article  CAS  Google Scholar 

  66. P. Marquetand, M. Richter, J. González-Vázquez, L. González, Nonadiabatic ab initio molecular dynamics including spin-orbit coupling and laser fields, Faraday Discuss., 2011, 153, 261–273.

    Article  CAS  PubMed  Google Scholar 

  67. G. Granucci, M. Persico, G. Spighi, Surface hopping trajectory simulations with spin-orbit and dynamical couplings, J. Chem. Phys., 2012, 137, 22A501.

    Article  PubMed  CAS  Google Scholar 

  68. M. Richter, P. Marquetand, J. González-Vásquez, I. Sola, L. González, Femtosecond intersystem crossing in the DNA nucleobase cytosine, J. Phys. Chem. Lett., 2012, 3, 3090–3095.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Crespo-Hernández.

Additional information

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp25437b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichardt, C., Wen, C., Vogt, R.A. et al. Role of intersystem crossing in the fluorescence quenching of 2-aminopurine 2’-deoxyriboside in solution. Photochem Photobiol Sci 12, 1341–1350 (2013). https://doi.org/10.1039/c3pp25437b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp25437b

Navigation