Skip to main content
Log in

Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 September 2014

This article has been updated

Abstract

There is a general need for methods to obtain fast in vivo diagnosis of skin tumours. Raman spectroscopy measures molecular structure and may thus have potential as a tool for skin tumour diagnosis. The purpose of this study was to investigate how skin pigmentation influenced the Raman spectra and skin tumour diagnostics in vivo. We obtained Raman spectra in vivo from the normal skin of 55 healthy persons with different skin pigmentation (Fitzpatrick skin type I–VI) and in vivo from 25 basal cell carcinomas, 41 pigmented nevi and 15 malignant melanomas. Increased skin pigmentation resulted in a higher spectral background caused by fluorescence, which could be removed by background correction. After background correction, we found only a negligible effect of pigmentation on the major spectral bands, and the comparison of the intensity of these bands allowed us to differentiate between normal skin and the different skin lesions independent of skin type. The diagnosis of skin lesions is possible due to significant (p < 0.05) differences found in the water band around 3250 cm-1, the protein specific band around 1250 cm-1 (amide-III) and the amide-III ratio that describes the protein/lipid ratio by comparing bands around 1250 cm-1 with bands around 1300 cm-1. We have shown that NIR-FT Raman spectroscopy is useable for malignant melanoma and basal cell carcinoma diagnostics in vivo and that pigmentation of the skin or lesion does not influence the diagnosis, but larger data sets are required to establish accurate diagnostic power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. T. Hirschfeld, B. Chase, Ft-Raman spectroscopy–development and justification, Appl. Spectrosc., 1986, 40, 133–137.

    Article  CAS  Google Scholar 

  2. M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, J. Hercogova, Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy, Photochem. Photobiol., 1997, 66, 418–423.

    Article  CAS  Google Scholar 

  3. M. Gniadecka, H. C. Wulf, N. N. Mortensen, et al., Diagnosis of basal cell carcinoma by Raman spectroscopy, J. Raman Spectrosc., 1997, 28, 125–129.

    Article  CAS  Google Scholar 

  4. M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, H. C. Wulf, Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue, J. Invest. Dermatol., 2004, 122, 443–449.

    Article  CAS  Google Scholar 

  5. A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, G. J. Puppels, Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy, J. Invest. Dermatol., 2002, 119, 64–69.

    Article  CAS  Google Scholar 

  6. S. B. Cartaxo, I. D. D. O. Santos, R. Bitar, A. F. Oliveira, L. M. Ferreira, H. S. Martinho, A. A. Martin, FT-Raman spectroscopy for the differentiation between cutaneous melanoma and pigmented nevuxs, Acta Cir. Bras., 2010, 25, 351–356.

    Article  Google Scholar 

  7. B. Bodanese, L. Silveira, R. Albertini, R. A. Zangaro, M. T. T. Pacheco, Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models, Photomed. Laser Surg., 2010, 28, S119–S127.

    Article  CAS  Google Scholar 

  8. Z. Huang, H. Zeng, I. Hamzavi, D. I. McLean, H. Lui, Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements, Opt. Lett., 2001, 26, 1782–1784.

    Article  CAS  Google Scholar 

  9. H. Lui, J. Zhao, D. McLean, H. Zeng, Real-time Raman spectroscopy for in vivo skin cancer diagnosis, Cancer Res., 2012, 72, 2491–2500.

    Article  CAS  Google Scholar 

  10. M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, J. Hercogovaand K. Rossen, Potential of Raman spectroscopy for in vitro and in vivo diagnosis of malignant melanoma, Proceedings of the XVI International Conference on Raman Spectroscopy, 1998, 764–765.

    Google Scholar 

  11. L. Knudsen, C. K. Johansson, P. A. Philipsen, et al., Natural variations and reproducibility of in vivo near-infrared Fourier transform Raman spectroscopy of normal human skin, J. Raman Spectrosc., 2002, 33, 574–579.

    Article  CAS  Google Scholar 

  12. C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, A. Mahadevan-Jansen, In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy, Lasers Surg. Med., 2008, 40, 461–467.

    Article  Google Scholar 

  13. S. Wang, J. H. Zhao, H. Lui, Q. L. He, H. S. Zeng, Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin, J. Photochem. Photobiol., B, 2011, 105, 183–189.

    Article  CAS  Google Scholar 

  14. Z. W. Huang, H. S. Zeng, I. Hamzavi, A. Alajlan, E. Tan, D. I. McLean, H. Lui, Cutaneous melanin exhibiting fluorescence emission under near-infrared light excitation, J. Biomed. Opt., 2006, 11, 34010.

    Article  Google Scholar 

  15. T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, L. K. Pershing, Non-invasive Raman spectroscopic detection of carotenoids in human skin, J. Invest. Dermatol., 2000, 115, 441–448.

    Article  CAS  Google Scholar 

  16. P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, G. J. Puppels, In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles, J. Invest. Dermatol., 2001, 116, 434–442.

    Article  CAS  Google Scholar 

  17. H. C. Wulf, Method and an apparatus for determining an individual’s ability to stand exposure to ultraviolet radiation, US Patent, 1989 4:882 598 1–38, 1989.

    Google Scholar 

  18. R. Na, I. M. Stender, M. Henriksen, H. C. Wulf, Autofluorescence of human skin is age-related after correction for skin pigmentation and redness, J. Invest. Dermatol., 2001, 116, 536–540.

    Article  CAS  Google Scholar 

  19. B. Kongshoj, A. Thorleifsson, H. C. Wulf, Pheomelanin and eumelanin in human skin determined by high-performance liquid chromatography and its relation to in vivo reflectance measurements, Photodermatol., Photoimmunol. Photomed., 2006, 22, 141–147.

    Article  CAS  Google Scholar 

  20. C. H. Liu, B. B. Das, W. L. S. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Celmer, A. Caron, R. R. Alfano, Raman, fluorescence, and time-resolved light-scattering as optical diagnostic-techniques to separate diseased and normal biomedical media, J. Photochem. Photobiol., B, 1992, 16, 187–209.

    Article  CAS  Google Scholar 

  21. K. U. Schallreuter, M. Zeschiesche, J. Moore, In vivo evidence for compromised phenyloalanine metabolism in vitiligo, Biochem. Biophys. Res. Commun., 1998, 243, 395–399.

    Article  CAS  Google Scholar 

  22. M. Gniadecka, O. F. Nielsen, S. Wessel, M. Heidenheim, D. H. Christensen, H. C. Wulf, Water and protein structure in photoaged and chronically aged skin, J. Invest. Dermatol., 1998, 111, 1129–1133.

    Article  CAS  Google Scholar 

  23. M. Gniadecka, O. F. Nielsen, D. H. Christensen, H. C. Wulf, Structure of water, proteins, and lipids in intact human skin, hair, and nail, J. Invest. Dermatol., 1998, 110, 393–398.

    Article  CAS  Google Scholar 

  24. S. A. Centeno, J. Shamir, Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art, J. Mol. Struct., 2008, 873, 149–159.

    Article  CAS  Google Scholar 

  25. V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, R. Cicero, Raman and optical spectroscopy of eumelanin films, J. Mol. Struct., 2005, 744–747, 717–721.

    Article  Google Scholar 

  26. Z. Huang, H. Lui, X. K. Chen, A. Alajlan, D. I. McLean, H. Zeng, Raman spectroscopy of in vivo cutaneous melanin, J. Biomed. Opt., 2004, 9, 1198–1205.

    Article  CAS  Google Scholar 

  27. F. Cavotorta, M. P. Fontana, A. Vecli, Raman spectroscopy of protein-water interactions in aqueous solutions, J. Chem. Phys., 1976, 65, 3635.

    Article  Google Scholar 

  28. S. R. Samanta, G. E. Walrafen, Raman intensities and interactions in aqueous Lysozyme solutions, J. Chem. Phys., 1978, 68, 3313–3315.

    Article  CAS  Google Scholar 

  29. A. T. Tu, Raman Spectrocscopy in Biology: Principles and Applications, Wiley, New York, 1982.

    Google Scholar 

  30. C. K. Johansson, M. Gniadecka, S. Ullman, P. Halberg, T. Kobayasi, H. C. Wulf, Alterations in collagen structure in hypermobility and Ehlers-Danlos syndromes detected by Raman spectroscopy in vivo, Proc. SPIE–Int. Soc. Opt. Eng., 2000, 4161, 138–143.

    CAS  Google Scholar 

  31. N. Terada, N. Ohno, S. Saitoh, Y. Fujii, H. Ohguro, S. Ohno, Raman microscopy of freeze-dried mouse eyeball-slice in conjunction with the “in vivo cryotechnique”, Microsc. Res. Tech., 2007, 70, 634–639.

    Article  Google Scholar 

  32. A. Samokhvalov, Y. Liu, J. D. Simon, Characterization of the Fe(iii)-binding site in sepia eumelanin by resonance Raman confocal microspectroscopy, Photochem. Photobiol., 2004, 80, 84–88.

    Article  CAS  Google Scholar 

  33. C. Krafft, M. Kirsch, C. Beleites, G. Schackert, R. Salzer, Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains, Anal. Bioanal. Chem., 2007, 389, 1133–1142.

    Article  CAS  Google Scholar 

  34. M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensenand J. Hercogova, Potential of NIR-FT Raman spectroscopy for diagnosis of malignant melanoma, in Spectroscopy of Biological Molecules: Modern Trends, ed. P. Carmona, R. Narvarro and A. Hernanz, Kluwer Academic Publishers, Netherlands, 1997, pp. 449–450.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Philipsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philipsen, P.A., Knudsen, L., Gniadecka, M. et al. Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation. Photochem Photobiol Sci 12, 770–776 (2013). https://doi.org/10.1039/c3pp25344a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp25344a

Navigation