Skip to main content
Log in

Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Highly fluorescent and thermo-stable peptide nanoribbons (PNRs) were fabricated by solvothermal selfassembly of a single peptide (d,d-diphenyl alanine peptides) with Sn-porphyrin (trans-dihydroxo- [5,10,15,20-tetrakis(p-tolyl)porphyrinato] Sn(IV) (SnTTP(OH)2)). The structural characterization of the asprepared nanoribbons was performed by transmitting electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), FT-IR and Raman spectroscopy, indicating that the lipophilic Sn-porphyrins are impregnated into the porous surface formed in the process of nanoribbon formation through intermolecular hydrogen bonding of the peptide main chains. Consequently the Snporphyrin- impregnated peptide nanoribbons (Sn-porphyrin-PNRs) exhibited typical UV-visible absorption spectrum of the monomer porphyrin with a red shifted Q-band, and their fluorescence quantum yield was observed to be enhanced compared to that of free Sn-porphyrin. Interestingly the fluorescence intensity and lifetimes of Sn-porphyrin-PNRs were selectively affected upon interaction with nucleotide base sequences of DNA while those of free Sn-porphyrins were not affected by binding with any of the DNA studied, indicating that DNA-induced changes in the fluorescence properties of Sn-porphyrin-PNRs are due to interaction between DNA and the PNR scaffold. These results imply that Sn-porphyrin-PNR will be useful as a potent fluorescent protein analogue and as a biocompatible DNA sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. G. M. Whitesides, B. Grzybowski, Self-assembly at all scales, Science, 2002, 295, 2418–2421.

    Article  CAS  Google Scholar 

  2. M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, N. Khazanovich, Self-assembling organic nanotubes based on a cyclic peptide architecture, Nature, 1993, 366, 324–327.

    Article  CAS  Google Scholar 

  3. N. Kol, L. A. Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, I. Rousso, Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures, Nano Lett., 2005, 5, 1343–1346.

    Article  CAS  Google Scholar 

  4. X. Yan, Q. He, K. Wang, L. Duan, Y. Cui, J. Li, Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery, Angew. Chem., Int. Ed., 2007, 46, 2431–2434.

    Article  CAS  Google Scholar 

  5. M. Reches, E. Gazit, Casting metal nanowires within discrete self-assembled peptide nanotubes, Science, 2003, 300, 625–627.

    Article  CAS  Google Scholar 

  6. M. Yemini, M. Reches, J. Rishpon, E. Gazit, Novel electrochemical biosensing platform using self-assembled peptide nanotubes, Nano Lett., 2005, 5, 183–186.

    Article  CAS  Google Scholar 

  7. M. Yemini, M. Reches, E. Gazit, J. Rishpon, Peptide nanotube-modified electrodes for enzyme-biosensor applications, Anal. Chem., 2005, 77, 5155–5159.

    Article  CAS  Google Scholar 

  8. S. Ray, D. Haldar, M. G. B. Drew, A. Banerjee, A new motif in the formation of peptide nanotubes: the crystallographic signature, Org. Lett., 2004, 6, 4463–4465.

    Article  CAS  Google Scholar 

  9. C. H. Gorbitz, Nanotube formation by hydrophobic dipeptides, Chem.–Eur. J., 2001, 7, 5153–5159.

    Article  CAS  Google Scholar 

  10. H. S. Kim, J. D. Hartgerink, M. R. Ghadiri, Oriented self-assembly of cyclic peptide nanotubes in lipid membranes, J. Am. Chem. Soc., 1998, 120, 4417–4424.

    Article  CAS  Google Scholar 

  11. S. Fernandez-Lopez, S. H. Kim, E. C. Choi, M. Delgado, J. R. Granja, Antibacterial agents based on the cyclic d,l-α-peptide architecture, Nature, 2001, 412, 452–455.

    Article  CAS  Google Scholar 

  12. K. Lu, J. Jacob, J. P. Thiyagarajan, V. P. Conticello, D. G. Lynn, Exploiting amyloid fibril lamination for nanotube self-assembly, J. Am. Chem. Soc., 2003, 125, 6391–6393.

    Article  CAS  Google Scholar 

  13. S. Vauthey, S. S. Santoso, H. Y. Gong, N. Watson, S. G. Zhang, Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5355–5360.

    Article  CAS  Google Scholar 

  14. Y. J. Song, S. R. Challa, C. J. Medforth, Y. Qiu, R. K. Watt, Synthesis of peptide-nanotube platinum-nanoparticle composites, Chem. Commun., 2004, 1044–1045.

    Google Scholar 

  15. C. H. Gorbitz, The structure of nanotubes formed by diphenyl alanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide, Chem. Commun., 2006, 2332–2334.

    Google Scholar 

  16. M. Reches, E. Gazit, Designed aromatic homodipeptides: formation of ordered nanostructures and potential nanotechnological applications, Phys. Biol., 2006, 3, S10–S19.

    Article  CAS  Google Scholar 

  17. N. Hendler, N. Sidelman, M. Reches, E. Gazit, Y. Rosenberg, S. Ritcher, Formation of well-organized self-assembled films from peptide nanotubes, Adv. Mater., 2007, 19, 1485–1488.

    Article  CAS  Google Scholar 

  18. M. Gupta, A. Bagaria, A. Mishra, P. Mathur, A. Basu, S. Ramakumar, V. S. Chauhan, Self-assembly of a dipeptide-containing conformationally restricted dehydrophenyl alanine residue to form ordered nanotubes, Adv. Mater., 2007, 19, 858–861.

    Article  CAS  Google Scholar 

  19. Y. Xuehai, C. Yue, H. Qiang, W. Kewei, L. Junbai, Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots, Chem. Mater., 2008, 20, 1522–1526.

    Article  Google Scholar 

  20. A. Sarai, H. Kono, Protein–DNA recognition patterns and predictions, Annu. Rev. Biophys. Biomol. Struct., 2005, 34, 379–398.

    Article  CAS  Google Scholar 

  21. S. Ahmad, A. Sarai, PSSM-based prediction of DNA binding sites in proteins, BMC Bioinformatics, 2005, 6, 33.

    Article  Google Scholar 

  22. J. Ryu, C. B. Park, Solid-phase growth of nanostructures from amorphous peptide thin film: effect of water activity and temperature, Chem. Mater., 2008, 20, 4284–4290.

    Article  CAS  Google Scholar 

  23. J. Ryu, C. B. Park, High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor, Adv. Mater., 2008, 20, 3754–3758.

    Article  CAS  Google Scholar 

  24. G. S. Drummond, R. A. Galbraith, M. K. Sardana, A. Kappas, Reduction of the C2 and C4 vinyl groups of Sn-protoporphyrin to form Sn-mesoporphyrin markedly enhances the ability of the metalloporphyrin to inhibit in vivo heme catabolism, Arch. Biochem. Biophys., 1987, 255, 64–74.

    Article  CAS  Google Scholar 

  25. K. E. Anderson, C. S. Simionatto, G. S. Drummond, A. Kappas, Clin. Pharmacol. Ther., 1986, 39, 510–520.

    Article  CAS  Google Scholar 

  26. A. Kappas, G. S. Drummond, Disposition of tin-protoporphyrin and suppression of hyperbilirubinemia in humans, J. Clin. Invest., 1986, 77, 335–339.

    Article  CAS  Google Scholar 

  27. A. Kappas, G. S. Drummond, C. S. Simionatto, K. E. Anderson, Control of heme oxygenase and plasma levels of bilirubin by a synthetic heme analogue, tin protoporphyrin, Hepatology, 1984, 4, 336–341.

    Article  CAS  Google Scholar 

  28. D. P. Arnold, Aromatic ring currents illustrated-NMR spectra of tin(iv) porphyrin complexes: an advanced undergraduate experiment, J. Chem. Educ., 1988, 65, 1111–1112.

    Article  CAS  Google Scholar 

  29. J. H. Jang, K. S. Jeon, S. Oh, H. J. Kim, T. Asahi, H. Masuhara, M. Yoon, Synthesis of Sn-porphyrin-intercalated trititanate nanofibers: optoelectronic properties and photocatalytic activities, Chem. Mater., 2007, 19, 1984–1991.

    Article  CAS  Google Scholar 

  30. K. R. Meier, M. Graetzel, Redox targeting of oligo-nucleotides anchored to nanocrystalline TiO2 films for DNA detection, ChemPhysChem, 2002, 4, 371–373.

    Article  Google Scholar 

  31. O. Carny, D. E. Shalev, E. Gazit, Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold, Nano Lett., 2006, 6, 1594–1597.

    Article  CAS  Google Scholar 

  32. J. Hu, I. Pavel, D. Moigno, M. Wumaier, W. Kiefer, Z. Chen, Y. Ye, Q. Wu, Q. Huang, S. Chen, F. Niu, Y. Gu, Fourier-transform Raman and infrared spectroscopic analysis of 2-nitro-tetraphenylporphyrin and metallo-2-nitro-tetraphenylporphyrins, Spectrochim. Acta, Part A, 2003, 59, 1929–1935.

    Article  CAS  Google Scholar 

  33. D. Skrzypek, I. Madejska, J. Habdas, A. Dudkowiak, The spectroscopic characterisation of proline derivatives of tolyl-porphyrins and their iron and cobalt complexes, J. Mol. Struct., 2008, 876, 177–185.

    Article  CAS  Google Scholar 

  34. J. L. Castro, L. Ramırez, J. F. Arenas, J. C. Otero, Vibrational spectra of 3-phenylpropionic acid and l-phenylalanine, J. Mol. Struct., 2005, 744–747, 887–891.

    Article  Google Scholar 

  35. C. Campochiaro, J. A. Hofmann Jr., D. A. Bocian, Resonance Raman spectra of chromium(v) and manganese(v) porphyrin nitrides, Inorg. Chem., 1985, 24, 449–450.

    Article  CAS  Google Scholar 

  36. K. S. Jeon, T. S. Park, Y. D. Suh, M. Yoon, AFM-correlated CSM-coupled Raman and fluorescence properties of water-soluble oxo-titanium(iv) porphyrin bound with DNA, J. Photochem. Photobiol., A, 2009, 207, 20–27.

    Article  CAS  Google Scholar 

  37. F. Sousa, C. Cruz, J. A. Queiroz, Amino acids–nucleotides biomolecular recognition: from biological occurrence to affinity chromatography, J. Mol. Recognit., 2010, 23, 505–518.

    Article  CAS  Google Scholar 

  38. K. Castelino, B. Kannan, A. Majumdar, Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces, Langmuir, 2005, 21, 1956–1961.

    Article  CAS  Google Scholar 

  39. F. Patolsky, A. Lichtenstein, I. Willner, Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection by tagged liposomes, J. Am. Chem. Soc., 2001, 123, 5194–5205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjoong Yoon.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp25337f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parayil, S.K., Lee, J. & Yoon, M. Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor. Photochem Photobiol Sci 12, 798–804 (2013). https://doi.org/10.1039/c3pp25337f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp25337f

Navigation