Skip to main content
Log in

Erythemal dose rate under noon overcast skies

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The incidence of ultraviolet radiation (UVR) under noon overcast skies was investigated in an urban, tropical site. Overcast skies stimulate people to be outdoors more freely and carelessly than under a cloudless scenario, thereby representing a situation with UVR. 153 occurrences of noon overcast skies were reported for erythemal dose rates (EDR) of up to 0.395 W m-2 (Extreme UV-Index) and average of 0.121 W m-2 (Moderate UVI). Erythemal doses varied from 0.4 to 21.6 Standard Erythema Dose (SED) units and averaged 7.7 SED. 34% of the occurrences of Extreme UVI were events of radiation enhancement up to 19% above the summer peak value of 0.332 W m-2. The elapsed time for such events ranged from 2 to 7 minutes and averaged 4.5 minutes. Cloud genera referring to EDR were predominantly Cu followed by As in summer, and Cu plus Sc and As in the other seasons. For events of radiation enhancement, cloud genera featured a reduction in the occurrence of Cu and an increase in the occurrence of As and Ac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO, Ultraviolet Radiation, EHC 160, World Health Organization, Geneva, Switzerland, 1994.

    Google Scholar 

  2. D. E. Godar, UV doses worldwide, Photochem. Photobiol., 2005, 81, 736–749.

    Article  CAS  PubMed  Google Scholar 

  3. P. Kullavanijaya, H. W. Lim, Photoprotection, J. Am. Acad. Dermatol., 2005, 52, 937–958.

    Article  PubMed  Google Scholar 

  4. M. Berwick, D. Kesler, Ultraviolet radiation exposure, vitamin D, and cancer, Photochem. Photobiol., 2005, 81, 1261–1266.

    Article  CAS  PubMed  Google Scholar 

  5. A. A. Silva, Daily distribution of UV-index in Belo Horizonte (Brazil) and the shadow rule, Braz. J. Geophys., 2009, 27, 313–322.

    Article  Google Scholar 

  6. S. Madronich, in UV-B Radiation and Ozone Depletion, Effects on Humans, Animals, Plants, Microorganisms, and Materials, ed. M. Tevini, Lewis Publishers, London, 1993, pp. 17–69.

  7. A. A. Silva, Local cloud cover, ground-based and satellite measurements of erythemal dose rate for un urban, tropical site in Southern Hemisphere, J. Atmos. Sol.–Terr. Phys., 2011, 73, 2474–2481.

    Article  Google Scholar 

  8. M. Antón, J. E. Gil, A. Cazorla, J. Fernández-Gálvez, I. Foyo-Moreno, F. J. Olmo, L. Alados-Arboledas, Short-term variability of experimental ultraviolet and total solar irradiance in Southeastern Spain, Atmos. Environ., 2011, 45, 4815–4821.

    Article  CAS  Google Scholar 

  9. J. Calbó, D. Pagès, J.-A. González, Empirical studies of cloud effects on UV radiation: a review, Rev. Geophys., 2005, 43, DOI: 10.1029/2004rg000155.

  10. A. Kylling, A. Albold, G. Seckmeyer, Transmittance of a cloud is wavelength-dependent in the UV-range: physical interpretation, Geophys. Res. Lett., 1997, 24, 397–400.

    Article  CAS  Google Scholar 

  11. B. Mayer, A. Kylling, S. Madronich, G. Seckmeyer, Enhanced absorption of UV radiation due to multiple scattering in clouds: experimental evidence and theoretical explanation, J. Geophys. Res., 1998, 103, 31241–31254.

    Article  CAS  Google Scholar 

  12. A. Lindfors, A. Arola, On the wavelength-dependent attenuation of UV radiation by clouds, Geophys. Res. Lett., 2008, 35, DOI: 10.1029/2007gl032571.

  13. J. S. Schafer, V. K. Saxena, B. N. Wenny, W. Barnard, J. J. De Luisi, Observed influence of clouds on ultraviolet-B radiation, Geophys. Res. Lett., 1996, 23, 2625–2628.

    Article  CAS  Google Scholar 

  14. P. Weihs, A. R. Webb, S. J. Hutchinson, G. W. Middleton, Measurements of the diffuse UV sky radiance during broken cloud conditions, J. Geophys. Res., 2000, 105, 4937–4944.

    Article  CAS  Google Scholar 

  15. A. Cede, M. Blumthaler, E. Luccini, R. D. Piacentini, L. Nuñez, Effects of clouds on erythemal and total irradiance as derived from data of the Argentine Network, Geophys. Res. Lett., 2002, 29, DOI: 10.1029/2002gl015708.

  16. R. D. Piacentini, A. Cede, H. Bárcena, Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina), J. Atmos. Sol.–Terr. Phys., 2003, 65, 727–731.

    Article  Google Scholar 

  17. C. Lovengreen, H. A. Fuenzalida, L. Videla, On the spectral dependency of UV radiation enhancements due to clouds in Valdivia, Chile (39.8o S), J. Geophys. Res., 2005, 110, DOI: 10.1029/2004jd005372.

  18. J. Sabburg, J. Calbó, Five years of cloud enhanced surface UV radiation measurements at two sites (in the Northern and Southern Hemispheres), Atmos. Res., 2009, 93, 902–912.

    Article  Google Scholar 

  19. M. Antón, A. A. Piedehierro, L. Alados-Arboledas, E. Wolfran, F. J. Olmo, Extreme ultraviolet index due to broken clouds at a midlatitude site, Granada (southeastern Spain), Atmos. Res., 2012, 118, 10–14.

    Article  Google Scholar 

  20. F. M. Mims III, J. E. Frederick, Cumulus clouds and UV-B, Nature, 1994, 371, 291.

    Article  Google Scholar 

  21. A. V. Parisi, N. Dows, Variation of the enhanced biologically damaging solar UV due to clouds, Photochem. Photobiol. Sci., 2004, 3, 643–647.

    Article  CAS  PubMed  Google Scholar 

  22. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles, John Wiley & Sons, New York, USA, 1976.

    Google Scholar 

  23. H. C. Van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications, Academic Press, New York, USA, 1980, vol. 2.

  24. WMO, International Cloud Atlas, World Meteorological Organization, Geneva, Switzerland, 1956, vol. 1.

  25. J. E. Frederick, H. E. Snell, Tropospheric influence on solar ultraviolet radiation: the role of clouds, J. Clim., 1990, 3, 373–381.

    Article  Google Scholar 

  26. A. A. Silva, L. L. P. Gabrich, Seasonal erythemal UV doses in Belo Horizonte, Brazil, Photochem. Photobiol., 2007, 83, 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  27. C. Benvenuto-Andrade, B. Zen, G. Fonseca, D. De Villa, T. Cestari, Sun exposure and Sun protection habits among high-school adolescents in Porto Alegre, Brazil, Photochem. Photobiol., 2005, 81, 630–635.

    Article  CAS  PubMed  Google Scholar 

  28. B. S. E. Peters, L. C. Santos, M. Fisberg, R. J. Wood, L. A. Martini, Prevalence of vitamin D insufficiency in Brazilian adolescents, Ann. Nutr. Metab., 2009, 54, 15–21.

    Article  CAS  PubMed  Google Scholar 

  29. M. P. Corrêa, J. C. Ceballos, Solar ultraviolet radiation measurements in one of the most populous cities of the world: aspects related to skin cancer cases and vitamin D availability, Photochem. Photobiol., 2010, 86, 438–444.

    Article  CAS  Google Scholar 

  30. A. F. McKinlay, B. L. Diffey, A reference action spectrum for ultraviolet induced erythemal in human skin, CIE J., 1987, 6, 17–22.

    Google Scholar 

  31. G. Hülsen, J. Gröbner, Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance, Appl. Opt., 2007, 46, 5877–5886.

    Article  PubMed  Google Scholar 

  32. C. N. Long, J. M. Sabburg, J. Calbó, D. Pagès, Retrieving cloud characteristics from ground-based daytime color all-sky images, J. Atmos. Oceanic Technol., 2006, 23, 633–652.

    Article  Google Scholar 

  33. WHO, Global Solar UV Index: a Practical Guide, World Health Organization, Geneva, Switzerland, 2002.

    Google Scholar 

  34. K. Stamnes, S. C. Tsay, W. Wiscombe, K. Jayaweera, Numerically stable algorithm for discrete ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 1988, 27, 2502–2509.

    Article  CAS  PubMed  Google Scholar 

  35. A. Dahlback, K. Stamnes, A new spherical model for computing the radiation field available for photolysis and heating at twilight, Planet. Space Sci., 1991, 39, 671–683.

    Article  Google Scholar 

  36. A. A. Silva, L. M. Tomaz, Total ozone column measurements for an urban, tropical site in the Southern Hemisphere with a Microtops II, J. Atmos. Sol.–Terr. Phys., 2012, 77, 161–166.

    Article  CAS  Google Scholar 

  37. A. A. Silva, A quarter century of TOMS total column ozone measurements over Brazil, J. Atmos. Sol.–Terr. Phys., 2007, 69, 1447–1458.

    Article  CAS  Google Scholar 

  38. M. Segal, J. Davis, The impact of deep cumulus reflection on the ground-level global irradiance, J. Appl. Meteorol., 1992, 31, 217–222.

    Article  Google Scholar 

  39. J. G. Estupiñán, S. Raman, G. H. Crescenti, J. J. Streicher, W. F. Basrnard, Effects of clouds and haze on UV-B radiation, J. Geophys. Res., 1996, 101, 16807–16816.

    Article  Google Scholar 

  40. R. L. McKenzie, K. J. Paulin, S. Madronich, Effects of snow cover on UV irradiance and surface albedo: a case study, J. Geophys. Res., 1998, 103, 28785–28792.

    Article  CAS  Google Scholar 

  41. G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, B. W. Forgan, C. N. Long, Cloud coverage based on all-sky imaging and its impact on surface solar irradiance, J. Appl. Meteorol., 2003, 42, 1421–1434.

    Article  Google Scholar 

  42. J. Crawford, R. E. Shetter, B. Lefer, C. Cantrell, W. Junkermann, S. Madronich, J. Calvert, Cloud impacts on UV spectral actinic flux observed during the international photolysis frequency measurement and model intercomparison (IPMMI), J. Geophys. Res., 2003, 108, DOI: 10.1029/2002jd002731.

  43. J. W. Krzyscin, J. Jaroslawski, P. S. Sobolewski, Effects of clouds on the surface erythemal UV-B irradiance at northern midlatitudes: estimation from the observations taken at Belsk, Poland (1999–2001), J. Atmos. Sol.–Terr. Phys., 2003, 65, 457–467.

    Article  Google Scholar 

  44. J. M. Sabburg, C. N. Long, Improved sky imager for studies of enhanced UV irradiance, Atmos. Chem. Phys., 2004, 4, 2543–2552.

    Article  CAS  Google Scholar 

  45. A. F. McKinlay, B. L. Diffey, A reference action spectrum for ultraviolet induced erythema in human skin, CIE J., 1987, 6, 17–22.

    Google Scholar 

  46. CIE, Erythema Reference Action Spectrum and Standard Erythemal Dose, Commission Internationale de l’Eclairage, Vienna, Austria, 1998.

    Google Scholar 

  47. A. W. Schmalwieser, G. Schauberger, M. Janouch, M. Nunez, T. Koskela, D. Berger, G. Karamanian, Global forecast model to predict the daily dose of the solar erythemally effective UV radiation, Photochem. Photobiol., 2005, 81, 154–162.

    Article  CAS  PubMed  Google Scholar 

  48. T. B. Fitzpatrick, The validity and practicality of sunreactive skin types I through VI, Arch. Dermatol., 1988, 124, 869–871.

    Article  CAS  PubMed  Google Scholar 

  49. ICNIRP, Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation), Health Phys., 2004, 87, 171–186.

    Article  Google Scholar 

  50. S. Allinson, et al., Validity and use of the UV index: report from the UVI working group, schloss Hohenkammer, Germany, 5–7 December 2011, Health Phys., 2012, 103, 301–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel A. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.A. Erythemal dose rate under noon overcast skies. Photochem Photobiol Sci 12, 777–786 (2013). https://doi.org/10.1039/c2pp25330e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25330e

Navigation