Skip to main content

Advertisement

Log in

Appropriate excitation wavelength removes obfuscations from pyrene excimer kinetics and mechanism studies

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The experimental procedures of time-resolved laser photolysis studies of pyrene excimer formation in solution have been scrutinized and the appropriate modifications have been implemented. Contrary to the experimental methods applied in all related previous work, the selection of a suitable excitation wavelength (such that the corresponding pyrene absorbance is less than 0.5 absorbance units) utilized in our study results in simple homogeneous kinetics. Consequently, the rate parameters obtained and the mechanism proposed differ significantly from those published previously. The rate constant values of the unimolecular decay of the pyrene monomer, the unimolecular decay of the pyrene excimer, and the excimer formation in decane solution (η = 0.860 mPa s) at 25 °C are (2.38 ± 0.01) × 106 s−1, (2.78 ± 0.02) × 107 s−1, and (3.11 ± 0.06) × 109 M−1 s−1, respectively. The dissociation of the excimer to form a singlet excited state pyrene and a ground state pyrene was shown to be negligible. The energies of activation corresponding to the monomer and excimer unimolecular decays were found to be 2.51 ± 0.07 and 25.7 ± 0.7 kJ mol−1, respectively. Also, our temperature resolved laser photolysis data revealed that the excimer formation has a negative energy of activation equal to −11.2 ± 0.5 kJ mol−1. This unique phenomenon may be attributed to steric effects in the collision of the reactants. The current findings are important for the correct data analysis and interpretation in many applications of the pyrene excimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. T. Förster, K. Kasper, Ein Konzentrationsumsehlag der fluoreszenz des pyrenes, Z. Electrochem., 1955, 59, 976–980.

    Google Scholar 

  2. B. Stevens, E. Hutton, Radiative life-time of the pyrene dimer and the possible role of excited dimers in energy transfer processes, Nature, 1960, 186, 1045–1046.

    Article  CAS  Google Scholar 

  3. J. B. Birks, L. G. Christophorou, Excimer fluorescence spectra of pyrene derivatives, Spectrochim. Acta, 1963, 19, 401–410.

    Article  Google Scholar 

  4. J. B. Birks, L. G. Christophorou, Excimer formation in polycyclic hydrocarbons and their derivatives, Nature, 1963, 197, 1064–1065.

    Article  CAS  Google Scholar 

  5. J. B. Birks, L. G. Christophorou, Resonance interactions of fluorescent organic molecules in solution, Nature, 1962, 196, 33–35.

    Article  CAS  Google Scholar 

  6. J. B. Birks, L. G. Christophorou, Excimer fluorescence of aromatic hydrocarbons in solution, Nature, 1962, 194, 442–443.

    Article  CAS  Google Scholar 

  7. J. B. Birks, L. G. Christophorou, ‘Excimer’ fluorescence I. Solution spectra of 1:2-benzanthracene and derivatives, Proc. R. Soc. London, Ser. A, 1963, 274, 552–564.

    Article  CAS  Google Scholar 

  8. J. B. Birks, D. J. Dyson, I. H. Munro, ‘Excimer’ fluorescence II. Lifetime studies of pyrene solutions, Proc. R. Soc. London, Ser. A, 1963, 275, 575–588.

    Article  CAS  Google Scholar 

  9. J. B. Birks, M. D. Lumb, I. H. Munro, ‘Excimer’ fluorescence V. Influence of solvent viscosity and temperature, Proc. R. Soc. London, Ser. A, 1964, 280, 289–297.

    Article  CAS  Google Scholar 

  10. A. Szabo, Theoretical approaches to reversible diffusion-influenced reactions: monomer-excimer kinetics, J. Chem. Phys., 1991, 95, 2481–2490.

    Article  CAS  Google Scholar 

  11. K. Sienicki, M. A. Winnik, Transient effects in monomer-excimer kinetics, J. Chem. Phys., 1987, 87, 2766–2772.

    Article  CAS  Google Scholar 

  12. J. M. G. Martinho, M. N. Berberan-Santos, Diffusion-influenced excimer formation kinetics, J. Chem. Phys., 1991, 95, 1817–1824.

    Google Scholar 

  13. M. N. Berberan-Santos, J. M. G. Martinho, Reversibility in monomer-excimer kinetics, Chem. Phys. Lett., 1991, 178, 1–8.

    Article  CAS  Google Scholar 

  14. J. Andre, F. Baros, M. A. Winnik, Kinetics of partly diffusion controlled reactions. 22. Diffusion effects on the kinetics of excimer formation, J. Phys. Chem., 1990, 94, 2942–2948.

    Article  CAS  Google Scholar 

  15. J. M. Vanderkooi, J. B. Callis, Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes, Biochemistry, 1974, 13, 4000–4006.

    Article  CAS  PubMed  Google Scholar 

  16. M. A. Winnik, J. M. G. Martinho, Transient effects in pyrene monomer-excimer kinetics, J. Phys. Chem., 1987, 91, 3640–3644.

    Article  Google Scholar 

  17. J. M. G. Martinho, J. P. Farinha, M. N. Berberan-Santos, J. Duhamel, M. A. Winnik, Test of a model for reversible excimer kinetics: pyrene in cyclohexanol, J. Chem. Phys., 1992, 96, 8143–8149.

    Article  CAS  Google Scholar 

  18. J. Duhamel, M. A. Winnik, F. Baros, J. C. Andre, J. M. G. Martinho, Diffusion effects on pyrene excimer kinetics: determination of the excimer formation rate coefficient time dependence, J. Phys. Chem., 1992, 96, 9805–9810.

    Article  CAS  Google Scholar 

  19. M. Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging, Chem. Rev., 2010, 110, 2641–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T. M. Figueira-Duarte, K. Müllen, Pyrene-based materials for organic electronics, Chem. Rev., 2011, 111, 7260–7314.

    Article  CAS  PubMed  Google Scholar 

  21. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970.

    Google Scholar 

  22. O. Valdes-Aguilera, C. Pathak, D. Neckers, Pyrene as a fluorescent probe for monitoring polymerization rates, Macromolecules, 1990, 23, 689–692.

    Article  CAS  Google Scholar 

  23. A. Stroeks, M. Shmorhun, A. M. Jamieson, R. Simha, Cure monitoring of epoxy resins by excimer fluorescence, Polymer, 1988, 29, 467–470.

    Article  CAS  Google Scholar 

  24. F. W. Wang, R. E. Lowry, B. M. Fanconi, Novel fluorescence method for cure monitoring of epoxy resins, Polymer, 1986, 27, 1529–1532.

    Article  CAS  Google Scholar 

  25. F. W. Wang, R. E. Lowry, W. H. Grant, Novel excimer fluorescence method for monitoring polymerization: 1. Polymerization of methyl methacrylate, Polymer, 1984, 25, 690–692.

    Article  CAS  Google Scholar 

  26. P. Somerharju, Pyrene-labeled lipids as tools in membrane biophysics and cell biology, Chem. Phys. Lipids, 2002, 116, 57–74.

    Article  CAS  PubMed  Google Scholar 

  27. M. Ollmann, G. Schwarzmann, K. Sandhoff, H.-J. Galla, Pyrene-labeled gangliosides: Micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers, Biochemistry, 1987, 26, 5943–5952.

    Article  CAS  PubMed  Google Scholar 

  28. H.-J. Galla, W. Hartmann, U. Theilen, E. Sackmann, On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes, J. Membr. Biol., 1979, 48, 215–236.

    Article  CAS  PubMed  Google Scholar 

  29. H.-J. Müller, M. Luxnat, H. J. Galla, Lateral diffusion of small solutes and partition of amphipaths in defect structures of lipid bilayers, Biochim. Biophys. Acta, 1986, 856, 283–289.

    Article  PubMed  Google Scholar 

  30. P. Hammarström, B. Kalman, B. H. Jonsson, U. Carlsson, Pyrene excimer fluorescence as a proximity probe for investigation of residual structure in the unfolded state of human carbonic anhydrase II, FEBS Lett., 1997, 420, 63–68.

    Article  PubMed  Google Scholar 

  31. X. Song, B. I. Swanson, Rational design of an optical sensing system for multivalent proteins, Langmuir, 1999, 15, 4710–4712.

    Article  CAS  Google Scholar 

  32. D. Sahoo, V. Narayanaswami, C. M. Kay, R. O. Ryan, Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III, Biochemistry, 2000, 39, 6594–6601.

    Article  CAS  PubMed  Google Scholar 

  33. D. Sahoo, P. M. M. Weers, R. O. Ryan, V. Narayanaswami, Lipid-triggered conformational switch of apolipophorin III helix bundle to an extended helix organization, J. Mol. Biol., 2002, 321, 201–214.

    Article  CAS  PubMed  Google Scholar 

  34. A. Irurzun, J. Nieva, Entry of Semliki forest virus into cells: effects of concanamycin A and nigericin on viral membrane fusion and infection, Virology, 1997, 227, 488–492.

    Article  CAS  PubMed  Google Scholar 

  35. J. Smit, R. Bittman, Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes, J. Virol., 1999, 73, 8476–8484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Nishizawa, Y. Kato, N. Teramae, Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized Guanidium receptor, J. Am. Chem. Soc., 1999, 121, 9463–9464.

    Article  CAS  Google Scholar 

  37. R.-H. Yang, W.-H. Chan, A. W. M. Lee, P.-F. Xia, H.-K. Zhang, K. Li, A ratiometric fluorescent sensor for Ag with high selectivity and sensitivity, J. Am. Chem. Soc., 2003, 125, 2884–2885.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Suzuki, T. Morozumi, H. Nakamura, New fluorimetric alkali and alkaline earth metal cation sensors based on noncyclic crown ethers by means of intramolecular excimer formation of pyrene, J. Phys. Chem. B, 1998, 102, 7910–7917.

    Article  CAS  Google Scholar 

  39. S. K. Kim, J. H. Bok, R. A. Bartsch, J. Y. Lee, J. S. Kim, A fluoride-selective PCT chemosensor based of formation of a static pyrene excimer, Org. Lett., 2005, 7, 4839–4842.

    Article  CAS  PubMed  Google Scholar 

  40. E. J. Jun, H. N. Won, J. S. Kim, K.-H. Lee, J. Yoon, Unique blue shift due to the formation of static pyrene excimer: highly selective fluorescent chemosensor for Cu2+, Tetrahedron Lett., 2006, 47, 4577–4580.

    Article  CAS  Google Scholar 

  41. Q. Dai, W. Liu, X. Zhuang, J. Wu, H. Zhang, P. Wang, Ratiometric fluorescence sensor based on a pyrene derivative and quantification detection of heparin in aqueous solution in serum, Anal. Chem., 2011, 83, 6559–6564.

    Article  CAS  PubMed  Google Scholar 

  42. A. Ueno, I. Suzuki, Host–guest sensory systems for detecting organic compounds by pyrene excimer fluorescence, Anal. Chem., 1990, 62, 2461–2466.

    Article  CAS  Google Scholar 

  43. R. Häner, S. M. Biner, S. M. Langenegger, T. Meng, V. L. Malinovskii, A highly sensitive, excimer-controlled molecular beacon, Angew. Chem., Int. Ed., 2010, 49, 1227–1230.

    Article  CAS  Google Scholar 

  44. K. Yamana, T. Iwai, Y. Ohtani, S. Sato, M. Nakamura, H. Nakano, Bis-pyrene-labeled oligonucleotides: sequence specificity of excimer and monomer fluorescence changes upon hybridization with DNA, Bioconjugate Chem., 2002, 13, 1266–1273.

    Article  CAS  Google Scholar 

  45. G. Tong, J. Lawor, G. Tregear, J. Haralambidis, Oligonucleotide-polyamide hybrid molecules containing multiple pyrene residues exhibit significant excimer fluorescence, J. Am. Chem. Soc., 1995, 117, 12151–12158.

    Article  CAS  Google Scholar 

  46. F. D. Lewis, Y. Zhang, R. L. Letsinger, Bispyrenyl excimer fluorescence: a sensitive oligonucleotide probe, J. Am. Chem. Soc., 1997, 119, 5451–5452.

    Article  CAS  Google Scholar 

  47. P. L. Paris, J. M. Langenhan, E. T. Kool, Probing DNA sequences in solution with a monomer-excimer fluorescence color change, Nucleic Acids Res., 1998, 26, 3789–3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D. Tang, P. Lu, D. Liao, X. Yang, Y. Zhang, C. Yu, Label-free detection of polynucleotide single-base mismatch via pyrene probe excimer emission, Spectrochim. Acta, 2011, 78, 747–752.

    Article  CAS  Google Scholar 

  49. K. Yamana, M. Takei, H. Nakano, Synthesis of oligonucleotide derivatives containing pyrene labeled glycerol linkers: enhanced excimer fluorescence on binding to a complementary DNA sequence, Tetrahedron Lett., 1997, 38, 6051–6054.

    Article  CAS  Google Scholar 

  50. H.-J. Galla, E. Sackmann, Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes, Biochim. Biophys. Acta, 1974, 339, 103–115.

    Article  CAS  PubMed  Google Scholar 

  51. H.-J. Galla, W. Hartmann, Excimer-forming lipids in membrane research, Chem. Phys. Lipids, 1980, 27, 199–219.

    Article  CAS  PubMed  Google Scholar 

  52. E. H. W. Pap, A. Hanicak, A. Hoek, K. W. A. Wirtz, J. W. G. Visser, Quantitative analysis of lipid–lipid and lipid–protein interactions in membranes by use of pyrene-labeled phosphoinositides, Biochemistry, 1995, 34, 9118–9125.

    Article  CAS  PubMed  Google Scholar 

  53. M. F. Blackwell, K. Gounaris, J. Barber, Evidence the pyrene excimer formation in membranes is not diffusion-controlled, Biochim. Biophys. Acta, 1986, 858, 221–234.

    Article  CAS  PubMed  Google Scholar 

  54. M. A. Winnik, T. Redpath, D. H. Richards, The dynamics of end-to-end cyclization in polystyrene probed by pyrene excimer formation, Macromolecules, 1980, 13, 328–335.

    Article  CAS  Google Scholar 

  55. F. W. Wang, R. E. Lowry, R. R. Cavanagh, Picosecond excimer fluorescence spectroscopy: applications to local motions of polymers and polymerization monitoring, Polymer, 1985, 26, 1657–1661.

    Article  CAS  Google Scholar 

  56. F. M. Winnik, Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media, Chem. Rev., 1993, 93, 587–614.

    Article  CAS  Google Scholar 

  57. M. Danko, J. Libiszowski, T. Biela, M. Wolszczak, A. Duda, Molecular dynamics of star-shaped poly(L-lactide)s in tetrahydrofuran as solvent monitored by fluorescence spectroscopy, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 4586–4599.

    Article  CAS  Google Scholar 

  58. M. Danko, J. Libiszowski, M. Wolszczak, D. Racko, A. Duda, Fluorescence study of the dynamics of a star-shaped poly(ε-caprolactone)s in THF: a comparison with star-shaped poly(L-lactide)s, Polymer, 2009, 50, 2209–2219.

    Article  CAS  Google Scholar 

  59. J. Yip, J. Duhamel, X. P. Qiu, F. M. Winnik, Fluorescence studies of a series of monodisperse telechelic α,ω-dipyrenyl poly(N-isopropylacrylamide)s in ethanol and in water, Can. J. Chem., 2011, 89, 163–172.

    Article  CAS  Google Scholar 

  60. H. Siu, J. Duhamel, Global analysis of the fluorescence decays of a pyrene-labeled polymer using a blob model, Macromolecules, 2004, 37, 9287–9289.

    Article  CAS  Google Scholar 

  61. A. K. Mathew, H. Siu, J. Duhamel, A blob model to study chain folding by fluorescence, Macromolecules, 1999, 32, 7100–7108.

    Article  CAS  Google Scholar 

  62. J. Duhamel, New insights in the study of pyrene excimer fluorescence to characterize macromolecules and their supramolecular assemblies in solution, Langmuir, 2012, 28, 6527–6538.

    Article  CAS  PubMed  Google Scholar 

  63. M. Ingratta, J. Hollinger, J. Duhamel, A case for using randomly labeled polymers to study long-range polymer chain dynamics by fluorescence, J. Am. Chem. Soc., 2008, 130, 9420–9428.

    Article  CAS  PubMed  Google Scholar 

  64. M. Ingratta, J. Duhamel, Correlating pyrene excimer formation with polymer chain dynamics in solution. Possibilities and limitations, Macromolecules, 2007, 40, 6647–6657.

    Article  CAS  Google Scholar 

  65. S. Teertstra, W. Lin, M. Gauthier, M. Ingratta, J. Duhamel, Comparison of the long range polymer chain dynamics of polystyrene and cis-polyisoprene using polymers randomly labeled with pyrene, Polymer, 2009, 50, 5456–5466.

    Article  CAS  Google Scholar 

  66. M. Ingratta, J. Duhamel, Effect of time on the rate of long range polymer segmental intramolecular encounters, J. Phys. Chem. B, 2009, 113, 2284–2292.

    Article  CAS  PubMed  Google Scholar 

  67. K. S. Focsaneanu, J. Scaiano, Potential analytical applications of differential fluorescence quenching: pyrene monomer and excimer emissions as sensors for electron deficient molecules, Photochem. Photobiol. Sci., 2005, 4, 817–821.

    Article  CAS  PubMed  Google Scholar 

  68. J. Huang, Z. Zhu, S. Bamrungsap, G. Zhu, M. You, X. He, K. Wang, W. Tan, Competition-mediated pyrene-switching aptasensor: probing lysozyme in Human Serum with a Monomer-Excimer Fluorescence Switch, Anal. Chem., 2010, 82, 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. P. Conlon, C. J. Yang, Y. Wu, Y. Chen, K. Martinez, Y. Kim, N. Stevens, A. A. Marti, S. Jockusch, N. J. Turro, W. Tan, Pyrene excimer signaling molecular beacons for probing nucleic acids, J. Am. Chem. Soc., 2008, 130, 336–342.

    Article  CAS  PubMed  Google Scholar 

  70. M. Goedeweeck, M. Auweraer, F. Schryver, Molecular dynamics of a peptide chain, studied by intramolecular excimer formation, J. Am. Chem. Soc., 1985, 107, 2334–2341.

    Article  CAS  Google Scholar 

  71. S. Chen, J. Duhamel, G. J. Bahun, A. Adronov, Quantifying the presence of unwanted fluorescent species in the study of pyrene-labeled macromolecules, J. Phys. Chem. B, 2011, 115, 9921–9929.

    Article  CAS  PubMed  Google Scholar 

  72. A. Nautiyal, P. B. Bisht, Steady state and time-resolved studies of pyrene in solution and in single microcrystals, J. Lumin., 2010, 130, 1829–1833.

    Article  CAS  Google Scholar 

  73. J. R. Platt, Classification of spectra of cata-condensed hydrocarbons, J. Chem. Phys., 1949, 17, 484–495.

    Article  CAS  Google Scholar 

  74. P. R. Salvi, P. Foggi, E. Castelucci, The two-photon excitation spectrum of pyrene, Chem. Phys. Lett., 1983, 98, 206–211.

    Article  CAS  Google Scholar 

  75. B.-C. Wang, J.-C. Chang, H.-C. Tso, H.-F. Hsu, C.-Y. Cheng, Theoretical investigation the electroluminescence characteristics of pyrene and its derivatives, J. Mol. Struct. (THEOCHEM), 2003, 629, 11–20.

    Article  CAS  Google Scholar 

  76. V. Lukeš, M. Ilčin, J. Kollár, P. Hrdlovič, Š. Chmela, On the geometrical structure and spectral properties of pyrene monomer and sterically constrained intramolecular pyrene dimers, Chem. Phys., 2010, 377, 123–131.

    Article  CAS  Google Scholar 

  77. R. Huenerbein, S. Grimme, Time-dependent density functional study of excimers and exciplexes of organic molecules, Chem. Phys., 2008, 343, 362–371.

    Article  CAS  Google Scholar 

  78. S. Shirai, S. Iwata, T. Tani, S. Inagaki, Ab initio studies of aromatic excimers using multiconfiguration quasi-degenerate perturbation theory, J. Phys. Chem. A, 2011, 115, 7687–7699.

    Article  CAS  PubMed  Google Scholar 

  79. H. Fujiwara, H. Fukumura, Laser ablation of a pyrene-doped poly(methyl methacrylate) film: dynamics of pyrene transient species by spectroscopic measurements, J. Phys. Chem., 1995, 99, 11844–11853.

    Article  CAS  Google Scholar 

  80. N. Nakashima, Y. Kume, N. Mataga, Electronic excitation transfer between the same kind of excited molecules in rigid solvents under high-density excitation with lasers, J. Phys. Chem., 1975, 79, 1788–1793.

    Article  CAS  Google Scholar 

  81. D. Gomez-Diaz, J. C. Mejuto, J. M. Navaza, Physicochemical properties of liquid mixtures. 1. Viscosity, density, surface tension and refractive index of cyclohexane + 2,2,4-trimethylpentane binary liquid systems from 25 °C to 50 °C, J. Chem. Eng. Data, 2001, 46, 720–724.

    Article  CAS  Google Scholar 

  82. D. C. Landaverde-Cortes, G. A. Iglesias-Silva, M. Ramos-Estrada, K. R. Hall, Densities and viscosities of MTBE + nonane or decane at p = 0.1 MPa from (273.15 to 363.15) K, J. Chem. Eng. Data, 2008, 53, 288–292.

    Article  CAS  Google Scholar 

  83. R. Williams, Delayed fluorescence of complex molecules in the vapor phase, J. Chem. Phys., 1958, 28, 577–581.

    Article  CAS  Google Scholar 

  84. T. Förster, Excimers, Angew. Chem., Int. Ed. Engl., 1969, 8, 333–343.

    Article  Google Scholar 

  85. P. Foggi, L. Pettini, I. Shnta, R. Righini, S. Califano, Transient absorption and vibrational relaxation dynamics of the lowest excited singlet state of pyrene in solution, J. Phys. Chem., 1995, 99, 7439–7445.

    Article  CAS  Google Scholar 

  86. A. C. Benniston, A. Harriman, S. L. Howell, C. A. Sams, Y.-G. Zhi, Intramolecular excimer formation and delayed fluorescence in sterically constrained pyrene dimers, Chem.–Eur. J., 2007, 13, 4665–4674.

    Article  CAS  PubMed  Google Scholar 

  87. E. J. Bowen, Fluorescence quenching in solution and in the vapour state, Trans. Faraday Soc., 1954, 50, 97–102.

    Article  CAS  Google Scholar 

  88. H. Siu, J. Duhamel, The importance of considering nonfluorescent pyrene aggregates for the study of pyrene-labeled associative thickeners by fluorescence, Macromolecules, 2005, 38, 7184–7186.

    Article  CAS  Google Scholar 

  89. D. F. Anghel, J. L. Toca-Herrera, F. M. Winnik, W. Rettig, R. V. Klitzing, Steady-state fluorescence investigation of pyrene-labeled poly(acrylic acid)s in aqueous solution and in the presence of sodium dodecyl sulfate, Langmuir, 2002, 18, 5600–5606.

    Article  CAS  Google Scholar 

  90. J. Kollár, P. Hrdlovič, Š. Chmela, Spectral properties of bichromophoric pyrene derivatives: monomer vs. excimer fluorescence, J. Photochem. Photobiol., A, 2010, 214, 33–39.

    Article  CAS  Google Scholar 

  91. B. Stevens, Some effects of molecular orientation on fluorescence emission and energy transfer in crystalline aromatic hydrocarbons, Spectrochim. Acta, 1962, 18, 439–448.

    Article  CAS  Google Scholar 

  92. J. M. Roberston, J. G. White, The crystal structure of pyrene. A quantitative X-ray investigation, J. Chem. Soc., 1947, 358–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bratoljub H. Milosavljevic.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp25307k

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanlon, A.D., Milosavljevic, B.H. Appropriate excitation wavelength removes obfuscations from pyrene excimer kinetics and mechanism studies. Photochem Photobiol Sci 12, 787–797 (2013). https://doi.org/10.1039/c2pp25307k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25307k

Navigation