Skip to main content
Log in

Influence of high levels of cloud cover on vitamin D effective and erythemal solar UV irradiances

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The solar irradiances for the initiation of vitamin D synthesis (UVD3) have been measured concurrently with the amount of cloud cover to investigate the influence of high cloud cover fraction. The cases of 6.5 and more octa cloud cover were considered for five solar zenith angle (SZA) ranges up to 80°. For each of the SZA ranges, the UVD3 reduced due to the high cloud cover. The average of the ratios of the UVD3 irradiances on a cloudy day to those on a clear day with the corresponding ozone and SZA are 0.71 for the 6.5–7.5 octa cloud and 0.45 for the more than 7.5 octa cloud ranges. The exposure times necessary to receive 1/3 MED to a horizontal plane were found to increase as the amount of cloud cover increased. For each cloud cover category, the range of values increased with cloud cover and with SZA. This research shows that the current public recommendations on the times of solar UV exposures required to produce adequate vitamin D are inappropriate for situations of more than 6.5 octa cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Holick, Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease, Am. J. Clin. Nutr., 2004, 80, S1678–S1688.

    Article  Google Scholar 

  2. CIE (International Commission on Illumination) Action spectrum for the production of pre-vitamin D3 in human skin, 2006, CIE 174: 2006.

  3. M. F. Holick, Photobiology of Vitamin D, in Vitamin D, ed. D. Feldman, F. H. Glorieux and J. W. Pike, Academic Press, San Diego, 1997, pp. 33–39.

    Google Scholar 

  4. E. M. John, D. M. Dreon, J. Koo and G. G. Schwartz, Residential sunlight exposure is associated with a decreased risk of prostrate cancer, J. Steroid Biochem. Mol. Biol., 2004, 89–90, 549–552.

    Article  Google Scholar 

  5. P. Tuohimaa, T. Keisala, A. Minasyan, J. Cachat and A. Kalueff, Vitamin D, nervous system and aging, Psychoneuroendocrinology, 2010, 345, S278–S286.

    Google Scholar 

  6. R. M. Lucas, A.-L. Ponsonby, Ultraviolet radiation and health: friend and foe, Med. J. Aust., 2002, 177, 594–598.

    Article  Google Scholar 

  7. CIE (International Commission on Illumination) Recommendations on minimum levels of solar UV exposure, 2011, CIE 201: 2011.

  8. Cancer Council, 2012, How much sun is enough? http://www.sunsmart.com.au/vitamin_d/how_much_sun_is_enough accessed Mar 2012.

  9. M. F. Holick, L. Y. Matsuoka and J. Wortsman, Age, vitamin D, and solar ultraviolet, Lancet, 1989, 2, 1104–1105.

    Article  CAS  Google Scholar 

  10. C. A. Nowson, T. H. Diamond, J. A. Pasco, R. S. Mason, P. N. Sambrook and J. A. Eisman, Vitamin D in Australia, Med. J. Aust., 2004, 177, 149–152.

    Article  Google Scholar 

  11. A. R. Webb and O. Engelsen, Calculated ultraviolet exposure levels for a healthy vitamin D status, Photochem. Photobiol., 2006, 82, 1697–1703.

    Article  CAS  Google Scholar 

  12. CIE (International Commission on Illumination), Erythema reference action spectrum and standard erythema dose, CIE S007E-1998, CIE Central Bureau, Vienna, Austria.

  13. A. R. Webb, R. Kift, J. L. Berry and L. E. Rhodes, The vitamin D debate: translating controlled experiments into reality for human sun exposure times, Photochem. Photobiol., 2010, 87, 741–745.

    Article  Google Scholar 

  14. D. J. Turnbull and A. V. Parisi, Latitudinal variations over Australia of the solar UV exposures for vitamin D3 in shade compared to full sun, Radiat. Res., 2010, 173, 373–379.

    Article  CAS  Google Scholar 

  15. A. J. Samanek, E. J. Croager, P. Gies, E. Milne, R. Prince, A. J. McMichael, R. M. Lucas and T. Slevin, Estimates of beneficial and harmful sun exposure times during the year for major Australian population centres, Med. J. Aust., 2006, 184, 338–341.

    Article  Google Scholar 

  16. A. J. Samanek, E. J. Croager, P. Gies, E. Milne, R. Prince, A. J. McMichael, R. M. Lucas and T. Slevin, Estimates of beneficial and harmful sun exposure times during the year for major Australian population cities, Med. J. Aust., 2006, 184, 338–341.

    Article  Google Scholar 

  17. A. R. Webb, Who, what, where and when–influences on cutaneous vitamin D synthesis, Progress Biophys. Mol. Biol., 2006, 92, 17–25.

    Article  CAS  Google Scholar 

  18. O. Engelsen, M. Brustad, L. Aksnes and E. Lund, Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness, Photochem. Photobiol., 2005, 81, 1287–1290.

    Article  CAS  Google Scholar 

  19. A. V. Parisi, D. J. Turnbull and J. Turner, Influence of clouds on pre-vitamin D3 effective solar UV exposures, Environ. Health, 2007, 7, 75–83.

    Google Scholar 

  20. M. Aun, K. Eerme, I. Ansko, U. Veismann and S. Latt, Modification of spectral ultraviolet doses by different types of overcast cloudiness and atmospheric aerosol, Photochem. Photobiol., 2011, 87, 461–469.

    Article  CAS  Google Scholar 

  21. D. M. Villan, A. Castrillo and J. B. Santos, Empirical models of UV total radiation and cloud effect study, Int. J. Climatol., 2010, 30, 1407–1415.

    Google Scholar 

  22. A. V. Parisi and N. J. Downs, Cloud cover and horizontal plane eye damaging solar UV exposures, Int. J. Biomet., 2004, 49, 130–136.

    Article  CAS  Google Scholar 

  23. J. Sabburg and C. N. Long, Improved sky imaging for studies of enhanced UV irradiance, Atmos. Chem. Phys., 2004, 4, 2543–2552.

    Article  CAS  Google Scholar 

  24. WMO, Guide to Meteorological Instruments and Methods of ObservationWorld Meteorological Organisation, WMO No. 8, 5th edn, 1983, ch. 11: 11.2.

  25. A. V. Parisi, D. J. Turnbull and J. Turner, Calculation of cloud modification factors for the horizontal plane eye damaging ultraviolet radiation, Atmos. Res., 2007, 86, 278–285.

    Article  CAS  Google Scholar 

  26. D. Lubin and J. E. Frederick, The ultraviolet radiation environment of the Antarctic Peninsula: the roles of ozone and cloud cover, J. Appl. Meteorol., 1991, 30, 478–493.

    Article  Google Scholar 

  27. G. R. Casale, A. M. Siani, H. Diemoz, M. G. Kimlin and A. Colosimo, Applicability of the polysulphone horizontal calibration to differently inclined dosimeters, Photochem. Photobiol., 2012, 88, 207–214.

    Article  CAS  Google Scholar 

  28. R. L. McKenzie, J. B. Liley and L. O. Bjorn, UV radiation: balancing risks and benefits, Photochem. Photobiol., 2009, 85, 88–98.

    Article  CAS  Google Scholar 

  29. O. Engelsen, The relationship between ultraviolet radiation exposure and vitamin D status, Nutrients, 2010, 2, 482–495.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio V. Parisi.

Additional information

Contribution to the Vitamin D update collected papers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parisi, A.V., Turnbull, D.J. & Downs, N.J. Influence of high levels of cloud cover on vitamin D effective and erythemal solar UV irradiances. Photochem Photobiol Sci 11, 1855–1859 (2012). https://doi.org/10.1039/c2pp25160d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25160d

Navigation