Skip to main content
Log in

Phototransformation of anthraquinone-2-sulphonate in aqueous solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Anthraquinone-2-sulphonate (AQ2S) is a triplet sensitiser that has recently been used to model the photoreactivity of chromophoric dissolved organic matter (CDOM). We show that the photolysis quantum yield of AQ2S under UVA irradiation varies from (3.4 ± 0.2) × 10−3 at μM AQ2S levels to (1.8 ± 0.1) × 10−2 at 3 mM AQ2S (μ ± σ). This trend is consistent with a combination of direct phototransformation and transformation sensitised by a photogenerated reactive species. In both cases a transient water adduct of AQ2S would be involved. Depending on the initial quinone concentration, the adduct could undergo transformation, give back ground-state AQ2S or react with it. The prevalence of the latter process at high AQ2S concentration would account for the increased values of the photolysis quantum yield. When using AQ2S as a triplet sensitiser, one should not exceed an initial concentration of 0.1 mM. Under the latter conditions the sensitised process is negligible compared to the direct photolysis, providing a simpler system to be studied, and the photolysis quantum yield is independent of the initial AQ2S concentration. This paper also shows, by adoption of density functional theory calculations, that the triplet state of AQ2S has most of the spin density localised on C=O, analogous to other photoactive quinones, which accounts for the oxidising character of the triplet state that tends to be reduced to a semiquinone radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. Ter Halle and C., Richard, Simulated solar light irradiation of mesotrione in natural waters Environ. Sci. Technol. 2006 40 3842–3847

    Article  CAS  PubMed  Google Scholar 

  2. C. K. Remucal and K., McNeill, Photosensitized amino acid degradation in the presence of riboflavin Environ. Sci. Technol. 2011 45 5230–5237

    Article  CAS  PubMed  Google Scholar 

  3. I. Grgic, L. I. Nieto-Gligorovski, S. Net, B. Temime-Roussel, S. Gligorovski and H., Wortham, Light induced multiphase chemistry of gas-phase ozone on aqueous pyruvic and oxalic acids Phys. Chem. Chem. Phys. 2010 12 698–707

    Article  CAS  PubMed  Google Scholar 

  4. J. L. Packer, J. J. Werner, D. E. Latch, K. McNeill and W. A., Arnold, Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid, and ibuprofen Aquat. Sci. 2003 65 342–351

    Article  CAS  Google Scholar 

  5. S. Canonica, T. Kohn, M. Mac, F. J. Real, J. Wirz and U. Von Gunten Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds Environ. Sci. Technol. 2005 39 9182–9188

    Article  CAS  PubMed  Google Scholar 

  6. Y. Yu, M. J. Ezell, A. Zelenyuk, D. Imre, L. Alexander, J. Ortega, J. L. Thomas, K. Gogna, D. J. Tobias, B. D’Anna, C. W. Harmon, S. N. Johnson and B. J. Finlayson-Pitts Nitrate ion photochemistry at interfaces: a new mechanism for oxidation of α-pinene Phys. Chem. Chem. Phys. 2008 10 3063–3071

    Article  CAS  PubMed  Google Scholar 

  7. H., Gorner, Electron transfer from aromatic amino acids to triplet quinones J. Photochem. Photobiol., B 2007 88 83–89

    Article  CAS  Google Scholar 

  8. T. Delatour, T. Douki, C. D’Ham and J., Cadet, Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation J. Photochem. Photobiol., B 1998 44 191–198

    Article  CAS  Google Scholar 

  9. S. Lacombe, H. Cardy, M. Simon, A. Khoukh, J. P. Soumillion and M., Ayadim, Oxidation of sulfides and disulfides under electron transfer or singlet oxygen photosensitization using soluble or grafted sensitizers Photochem. Photobiol. Sci. 2002 1 347–354

    Article  CAS  PubMed  Google Scholar 

  10. J. Wenk, U. von Gunten and S., Canonica, Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical Environ. Sci. Technol. 2011 45 1334–1340

    Article  CAS  PubMed  Google Scholar 

  11. V. Maurino, A. Bedini, D. Borghesi, D. Vione and C., Minero, Phenol transformation photosensitised by quinoid compounds Phys. Chem. Chem. Phys. 2011 13 11213–11221

    Article  CAS  PubMed  Google Scholar 

  12. P. R. Maddigapu, C. Minero, V. Maurino, D. Vione, M. Brigante and G., Mailhot, Enhancement by anthraquinone-2-sulphonate of the photonitration of phenol by nitrite: implication for the photoproduction of nitrogen dioxide by coloured dissolved organic matter in surface waters Chemosphere 2010 81 1401–1406

    Article  CAS  Google Scholar 

  13. P. R. Maddigapu, M. Minella, D. Vione, V. Maurino and C., Minero, Modeling phototransformation reactions in surface water bodies: 2,4-dichloro-6-nitrophenol as a case study Environ. Sci. Technol. 2011 45 209–214

    Article  CAS  PubMed  Google Scholar 

  14. D. Vione, P. R. Maddigapu, E. De Laurentiis, M. Minella, M. Pazzi, V. Maurino, C. Minero, S. Kouras and C., Richard, Modelling the photochemical fate of ibuprofen in surface waters Water Res. 2011 45 6725–6736

    Article  CAS  PubMed  Google Scholar 

  15. I. Loeff, A. Treinin and H., Linschitz, Photochemistry of 9,10-anthraquinone-2-sulfonate in solution. 1. Intermediates and mechanism J. Phys. Chem. 1983 87 2536–2544

    Article  CAS  Google Scholar 

  16. P. R. Maddigapu, A. Bedini, C. Minero, V. Maurino, D. Vione, M. Brigante, G. Mailhot and M., Sarakha, The pH-dependent photochemistry of anthraquinone-2-sulfonate Photochem. Photobiol. Sci. 2010 9 323–330

    Article  CAS  PubMed  Google Scholar 

  17. H. J. Kuhn, S. E. Braslavsky and R., Schmidt, Chemical actinometry Pure Appl. Chem. 2004 76 2105–2146

    Article  CAS  Google Scholar 

  18. S. E., Braslavsky, Glossary of terms used in photochemistry Pure Appl. Chem. 2007 79 293–465

    Article  CAS  Google Scholar 

  19. K. P. Clark and H. I., Stonehill, Photochemistry and radiation chemistry of anthraquinone-2-sodium-sulphonate in aqueous solution. Part 1. Photochemical kinetics in aerobic solution J. Chem. Soc., Faraday Trans. 1 1972 68 577–590

    Article  CAS  Google Scholar 

  20. J. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, PA, 1996

    Google Scholar 

  21. J. A. Pople, P. M. W. Gill and B. G., Johnson, Kohn-Sham density-functional theory within a finite basis set Chem. Phys. Lett. 1992 199 557–560

    Article  CAS  Google Scholar 

  22. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989

    Google Scholar 

  23. D., Becke, Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 1993 98 5648–5652

    Article  CAS  Google Scholar 

  24. C. E. H., Dessent,, A density functional theory study of the anthracene anion Chem. Phys. Lett. 2000 330 180–187

    Article  CAS  Google Scholar 

  25. K. E. Wise, A. K. Grafton and R. A., Wheeler, Trimethyl-p-benzoquinone provides excellent structural, spectroscopic, and thermochemical models for plastoquinone-1 and its radical anion J. Phys. Chem. A 1997 101 1160–1165

    Article  CAS  Google Scholar 

  26. A. K. Grafton, A. E. Boesch and R. A., Wheeler, Structures and properties of vitamin K and its radical anion predicted by a hybrid Hartree-Fock/density functional method J. Mol. Struct. (THEOCHEM) 1997 392 1–11

    Article  CAS  Google Scholar 

  27. D. Jacquemin, J. Preat, M. Charlot, V. Wathelet, J. M. Andre and E. A., Perpete, Theoretical investigation of substituted anthraquinone dyes J. Chem. Phys. 2004 121 1736–1743

    Article  CAS  PubMed  Google Scholar 

  28. R. Krishnan, J. S. Binkley, R. Seeger and J. A., Pople, Self consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys. 1980 72 650–654

    Article  CAS  Google Scholar 

  29. A. D. McLean and G. S., Chandler, Contracted Gaussian basis sets for molecular. calculations. I. Second row atoms, Z = 11-18 J. Chem. Phys. 1980 72 5639–5648

    Article  CAS  Google Scholar 

  30. S. Miertus, E. Scrocco and J., Tomasi, Electrostatic interaction of a solute with a continuum: a direct utilization of ab initio molecular potentials for the prevision of solvent effects J. Chem. Phys. 1981 55 117–129

    CAS  Google Scholar 

  31. E. Runge and E. K. U., Gross, Density-functional theory for time-dependent systems Phys. Rev. Lett. 1984 52 997–1000

    Article  CAS  Google Scholar 

  32. M. Cossi and V., Barone, Time-dependent density functional theory for molecules in liquid solutions J. Chem. Phys. 2001 115 4708–4717

    Article  CAS  Google Scholar 

  33. R. W. Browne, N. M. O’Boyle, J. J. McGarvey and J. G., Vos, Elucidating excited state electronic structure and intercomponent interactions in multicomponent and supramolecular systems Chem. Soc. Rev. 2005 34 641–663

    Article  CAS  PubMed  Google Scholar 

  34. L. Salassa, C. Garino, G. Salassa, C. Nervi, R. Gobetto, C. Lamberti, D. Gianolio, R. Bizzarri and J. P., Sadler, Ligand-selective photodissociation from [Ru(bpy)(4AP)4]2+: a spectroscopic and computational study Inorg. Chem. 2009 48 1469–1481

    Article  CAS  PubMed  Google Scholar 

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, GAUSSIAN 03 (Revision B.05), Gaussian, Inc., Pittsburgh, PA, 2003

    Google Scholar 

  36. N. M. O’Boyle and J. G. Vos, GaussSum, version 1.0.5, Dublin City University, Dublin, Ireland, 2005. http://gausssum.sourceforge.net, last accessed September 2011

    Google Scholar 

  37. R. S. K. A. Gamage, B. M. Peake and J., Simpson, X-Ray crystal structure determination of some sodium anthraquinone sulfonate derivatives Aust. J. Chem. 1993 46 1595–1604

    Article  CAS  Google Scholar 

  38. V. Maurino, D. Borghesi, D. Vione and C., Minero, Transformation of phenolic compounds upon UVA irradiation of anthraquinone-2-sulfonate Photochem. Photobiol. Sci. 2008 7 321–327

    Article  CAS  PubMed  Google Scholar 

  39. B. Sui and X., Fu, Novel application of 1-/2-phenyl substituted 9,10-anthraquinones in solid electrochromic devices J. Solid State Electrochem. 2009 13 1889–1895

    Article  CAS  Google Scholar 

  40. A. E. Alegría, A. Ferrer, G. Santiago, E. Sepúlveda and W., Flores, Photochemistry of water-soluble quinones. Production of hydroxyl radical, singlet oxygen and the superoxide ion J. Photochem. Photobiol., A 1999 127 57–65

    Article  Google Scholar 

  41. J. N. Moore, D. Phillips and R. E., Hester, Time-resolved resonance Raman spectroscopy applied to the photochemistry of the sulfonated derivatives of 9,10-anthraquinone J. Phys. Chem. 1988 92 5619–5627

    Article  CAS  Google Scholar 

  42. I. Loeff, S. Goldstein, A. Treinin and H., Linschitz, Interactions of formate ion with triplets of anthraquinone-2-sulfonate, 1,4-naphthoquinone, benzophenone-4-carboxylate, and benzophenone-4-sulfonate J. Phys. Chem. 1991 95 4423–4430

    Article  CAS  Google Scholar 

  43. B. E. Hulme, E. J. Land and G. O., Phillip, Pulse radiolysis of 9,10-anthraquinones. Part 1. Radicals J. Chem. Soc., Faraday Trans. 1 1972 68 1992–2002

    Article  CAS  Google Scholar 

  44. J. N. Moore, D. Phillips, N. Nakashima and K., Yoshihara, Photochemistry of 9,10-anthraquinone-2,6-disulphonate J. Chem. Soc., Faraday Trans. 2 1986 82 745–761

    Article  CAS  Google Scholar 

  45. D. Phillips, J. N. Moore and R. E., Hester, Time-resolved resonance Raman spectroscopy applied to anthraquinone photochemistry J. Chem. Soc., Faraday Trans. 2 1986 82 2093–2104

    Article  CAS  Google Scholar 

  46. B. Sur, M. Rolle, C. Minero, V. Maurino, D. Vione, M. Brigante and G., Mailhot, Formation of hydroxyl radicals by irradiated 1-nitronaphthalene (1NN): oxidation of hydroxyl ions and water by the 1NN triplet state Photochem. Photobiol. Sci. 2011 10 1817–1824

    Article  CAS  PubMed  Google Scholar 

  47. R. S. Silva and D. E., Nicodem, Deuterium isotope effects on the photoreduction of 9,10-phenanthrenequinone and benzophenone by 2-propanol J. Photochem. Photobiol., A 2008 194 76–80

    Article  CAS  Google Scholar 

  48. H. Nagakubo, G. Kubota, K. Kubo, T. Kaneko, T. Sakurai and H., Inoue, Self-sensitized photolysis of N-(1-naphthoyl)-N-phenyl-O-(benzoyl-substituted benzoyl)hydroxylamines Bull. Chem. Soc. Jpn. 1996 69 2603–2611

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcello Brigante or Davide Vione.

Additional information

Electronic supplementary information (ESI) available: Additional data of the DFT study of AQ2S T1, LFP transient absorption spectra. See DOI: 10.1039/c2pp25111f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedini, A., De Laurentiis, E., Sur, B. et al. Phototransformation of anthraquinone-2-sulphonate in aqueous solution. Photochem Photobiol Sci 11, 1445–1453 (2012). https://doi.org/10.1039/c2pp25111f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25111f

Navigation