Skip to main content
Log in

Stem cell-based photodynamic therapy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have transfected murine neural stem cells (NSCs) and rat umbilical cord matrix-derived stem cells (RUCMSCs) with a plasmid expressing gaussia luciferase (gLuc). These cells are engineered to secrete the luciferase. We have used gLuc containing supernatant from culturing the NSCs to perform in vitro photodynamic therapy of murine melanoma cells (B16F10), and RUCMSCs to perform in vivo PDT of lung melanomas in C57BL/6 mice. The treatment system was comprised of aminolevulic acid as a prodrug for the synthesis of the photosensitizer protoporphyrin IX, gaussia luciferase, and its’ substrate coelenterazine. A significant reduction of the number of live melanoma cells in vitro and a borderline significant retardation of tumour growth in vivo was observed after coelenterazine-mediated PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. S. Marchini, M. D’Incalci and M. Broggini, New molecules and strategies in the field of anticancer agents, Curr. Med. Chem.: Anti-Cancer Agents, 2004, 4, 247–262.

    CAS  PubMed  Google Scholar 

  2. http://www.cancer.gov/.

  3. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  4. U.S. Food and Drug Administration (December 2003). Approved claims for palliative line therapy. Retrieved December 29, 2003, from: http://www.accessdata.fda.gov.

  5. J. Strasswimmer and D. J. Grande, Do pulsed lasers produce an effective photodynamic therapy response?, Lasers Surg. Med., 2006, 38, 22–25.

    Article  PubMed  Google Scholar 

  6. H. Tanaka, K. Hashimoto, I. Yamada, K. Masumoto, T. Ohsawa, M. Murai and T. Hirano, Interstitial photodynamic therapy with rotating and reciprocating optical fibers, Cancer, 2001, 91, 1791–1796.

    Article  CAS  PubMed  Google Scholar 

  7. H. Lui, L. Hobbs, W. D. Tope, P. K. Lee, C. Elmets, N. Provost, A. Chan, H. Neyndorff, X. Y. Su, H. Jain, I. Hamzavi, D. McLean and R. Bissonnette, Photodynamic therapy of multiple nonmelanoma skin cancers with verteporfin and red light-emitting diodes: two-year results evaluating tumor response and cosmetic outcomes, Arch. Dermatol., 2004, 140, 26–32.

    Article  CAS  PubMed  Google Scholar 

  8. K. E. Borbas and D. Lahaye, Photodynamic therapy of cancer, in Anticancer therapeutics, ed. S. Missailidis, John Wiley & Sons, Ltd, 2008, pp. 187–222.

    Chapter  Google Scholar 

  9. Y. Yu, T. Timiryasova, Q. Zhang, R. Beltz and A. Szalay, Optical imaging: bacteria, viruses, and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals, Anal. Bioanal. Chem., 2003, 377, 964–972.

    Article  CAS  PubMed  Google Scholar 

  10. S. Das, A. M. Powe, G. A. Baker, B. Valle, B. El-Zahab, H. O. Sintim, M. Lowry, S. O. Fakayode, M. E. McCarroll, G. Patonay, M. Li, R. M. Strongin, M. L. Geng and I. M. Warner, Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 2012, 84, 597–625.

    Article  CAS  PubMed  Google Scholar 

  11. C. Zong, J. Wu, C. Wang, H. Ju and F. Yan, Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening, Anal. Chem., 2012, 84, 2410–2415.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Yu, T. Timiryasova, Q. Zhang, R. Beltz and A. Szalay, Optical imaging: bacteria, viruses, and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals, Anal. Bioanal. Chem., 2003, 377, 964–972.

    Article  CAS  PubMed  Google Scholar 

  13. B. A. Tannous and J. Teng, Secreted blood reporters: insights and applications, Biotechnol. Adv., 2011, 29, 997–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. L. Dubuisson, J. F. Rees, J. Marchand-Brynaert, Coelenterazine (marine bioluminescent substrate): a source of inspiration for the discovery of novel antioxidants, Drug Dev. Ind. Pharm., 2005, 31, 827–849.

    Article  CAS  PubMed  Google Scholar 

  15. B. Zhao, Y.-Y. He, Recent advances in the prevention and treatment of skin cancer using photodynamic therapy, Expert Rev. Anticancer Ther., 2010, 10, 1797–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Morgan and A. R. Oseroff, Mitochondria-based photodynamic anti-cancer therapy, Adv. Drug Delivery Rev., 2001, 49, 71–86.

    Article  CAS  Google Scholar 

  17. H. C. Hatcher, R. N. Singh, F. M. Torti and S. V. Torti, Synthetic and natural iron chelators: therapeutic potential and clinical use, Future Med. Chem., 2009, 1, 1643–1670.

    Article  CAS  PubMed  Google Scholar 

  18. T. Theodossiou, J. S. Hothersall, E. A. Woods, K. Okkenhaug, J. Jacobson and A. J. MacRobert, Firefly luciferin-activated rose bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 Cells, Cancer Res., 2003, 63, 1818–1821.

    CAS  PubMed  Google Scholar 

  19. A. Roda, M. Guardigli, E. Michelini and M. Mirasoli, Nanobioanalytical luminescence: Förster-type energy transfer methods, Anal. Bioanal. Chem., 2009, 393, 109–123.

    Article  CAS  PubMed  Google Scholar 

  20. M. Morisaki, J. Rubio-Lightbourn and N. Ikekawa, 1. Steroids. V. Synthesis of active forms of vitamin D. I. facile synthesis of 25-hydroxycholesterol full text, Chem. Pharm. Bull., 1973, 21, 457–458.

    Article  CAS  Google Scholar 

  21. S. H. Mousavi, J. Tavakkol-Afshari, A. Brook, I. Jafari-Anarkooli, Direct toxicity of rose bengal in MCF-7 cell line: role of apoptosis, Food Chem. Toxicol., 2009, 47, 855–859.

    Article  CAS  PubMed  Google Scholar 

  22. R. S. Rachakatla, S. Balivada, G. M. Seo, C. B. Myers, H. Wang, T. N. Samarakoon, R. Dani, M. Pyle, F. O. Kroh, B. Walker, X. Leaym, O. B. Koper, V. Chikan, S. H. Bossmann, M. Tamura and D. L. Troyer, Attenuation of mouse melanoma by A/C magnetic field after delivery of bi-magnetic nanoparticles by neural progenitor cells, ACS Nano, 2010, 4, 7093–7104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. T. Basel, S. Balivada, H. Wang, T. B. Shrestha, G. M. Seo, M. Pyle, G. Abayaweera, R. Dani, O. B. Koper, M. Tamura, V. Chikan, S. H. Bossmann and D. L. Troyer, Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model, Int. J. Nanomed., 2012, 7, 297–306.

    Article  CAS  Google Scholar 

  24. G. M. Seo, R. S. Rachakatla, S. Balivada, M. Pyle, T. B. Shrestha, M. T. Basel, C. Myers, H. Wang, M. Tamura, S. H. Bossmann and D. L. Troyer, A self-contained enzyme activating prodrug cytotherapy for preclinical melanoma, Mol. Biol. Rep., 2012, 39, 157–165.

    Article  CAS  PubMed  Google Scholar 

  25. M. T. Basel, S. Balivada, T. B. Shrestha, G. M. Seo, M. M. Pyle, M. Tamura, S. H. Bossmann and D. L. Troyer, A cell-delivered and cell-activated SN38-dextran prodrug increases survival in a murine disseminated pancreatic cancer model, Small, 2012, 8, 913–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. E. Y. Snyder, D. L Deitcher, C. Walsh, S. Arnold-Aldea, E. A. Hartwieg and C. L. Cepko, Multipotent neural cell lines can engraft and participate in development of mouse cerebellum, Cell, 1992, 68, 33–51.

    Article  CAS  PubMed  Google Scholar 

  27. S. Mahor, E. Collin, B. C. Dash and A. Pandit, Controlled release of plasmid DNA from hyaluronan nanoparticles, Curr. Drug Delivery, 2011, 8, 354–362.

    Article  CAS  Google Scholar 

  28. C. Doi, D. K. Maurya, M. M. Pyle, D. Troyer and M. Tamura, Cytotherapy with naive rat umbilical cord matrix stem cells significantly attenuates growth of murine pancreatic cancer cells and increases survival in syngeneic mice, Cytotherapy, 2010, 12, 408–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. D. K. Chatterjee, L. S. Fong and Y. Zhang, Nanoparticles in photodynamic therapy: an emerging paradigm, Adv. Drug Delivery Rev., 2008, 60, 1627–1637.

    Article  CAS  Google Scholar 

  30. R. S. Rachakatla and D. Troyer, Wharton’s jelly stromal cells as potential delivery vehicles for cancer therapeutics, Future Oncol., 2009, 5, 1237–1244.

    Article  PubMed  Google Scholar 

  31. A. H. Cory, T. C. Owen, J. A. Barltrop and J. G. Cory, Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture, Cancer Commun., 1991, 3, 207–212.

    Article  CAS  PubMed  Google Scholar 

  32. M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S.-i. Ogura and T. Tanaka, Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy, Int. Immunopharmacol., 2011, 11, 358–365.

    Article  CAS  PubMed  Google Scholar 

  33. M. H. Bellini, E. L. Coutinho, L. C. Courrol, F. R. D. Silva, N. D. Vieira and N. Schor, Correlation between autofluorescence intensity and tumor area in mice bearing renal cell carcinoma, J. Fluoresc., 2008, 18, 1163–1168.

    Article  CAS  PubMed  Google Scholar 

  34. K. Onizawa, N. Okamura, H. Saginoya and H. Yoshida, Characterization of autofluorescence in oral squamous cell carcinoma, Oral Oncol., 2003, 39, 150–156.

    Article  CAS  PubMed  Google Scholar 

  35. P. Krishnamurthy and J. D. Schuetz, The role of ABCG2 and ABCB6 in porphyrin metabolism and cell survival, Curr. Pharm. Biotechnol., 2011, 12, 647–655.

    Article  CAS  PubMed  Google Scholar 

  36. M. Gentile, L. Latonen and M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res., 2003, 31, 4779–4790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Pop, R. Ion, M. Neagu and C. Constantin, Sensitizer localization and immune response in photodynamic therapy of B16 cells, Laser Phys., 2011, 21, 576–581.

    Article  CAS  Google Scholar 

  38. J. Nowakowska, The effect of pH on the absorption spectra of porphyrins, Ann. Acad. Med. Gedan., 2002, 32, 281–292.

    CAS  Google Scholar 

  39. K. Berg, Basic principles of 5-aminolevulinic acid-based photodynamic therapy, Comprehensive Ser. Photosci., 2001, 2, 115–162.

    Article  CAS  Google Scholar 

  40. G. Ren, Y. Pan and Z. Cheng, Molecular probes for malignant melanoma imaging, Curr. Pharm. Biotechnol., 2010, 11, 590–602.

    Article  CAS  PubMed  Google Scholar 

  41. M.-S. Kang, D.-M. Kim, J. S. Kim, J.-H. Jeong, Synthesis of 5-aminolevulinic acid (ALA) and its t-butyl ester for the fluorescence detection of early cancer, Arch. Pharmacal Res., 2005, 28, 1111–1113.

    Article  CAS  Google Scholar 

  42. T. B. Shrestha, Heterocycles for Life-Sciences Applications and Information Storage, Department of Chemistry, Kansas State University, Manhattan, KS, 2010, p. 162.

    Google Scholar 

  43. K. Teranishi and O. Shimomura, Solubilizing coelenterazine in water with hydroxypropyl-beta-cyclodextrin, Biosci., Biotechnol., Biochem., 1997, 61, 1219–1220.

    Article  CAS  Google Scholar 

  44. K. E. Mitchell, M. L. Weiss, B. M. Mitchell, P. Martin, D. Davis, L. Morales, B. Helwig, M. Beerenstrauch, K. Abou-Easa, T. Hildreth, D. Troyer and S. Medicetty, Matrix cells from Wharton’s jelly form neurons and glia, Stem Cells, 2003, 21, 50–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tej B. Shrestha, Deryl L. Troyer or Stefan H. Bossmann.

Additional information

Electronic supplementary information (ESI) available: 1H-NMR of aminolevulinic acid, ANOVA analysis of the in vitro and in vitro PDT experiments. See DOI: 10.1039/c2pp05417e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, T.B., Seo, G.M., Basel, M.T. et al. Stem cell-based photodynamic therapy. Photochem Photobiol Sci 11, 1251–1258 (2012). https://doi.org/10.1039/c2pp05417e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05417e

Navigation