Abstract
We investigate the equilibrium, kinetics, and mechanism of the photochromic transformation of a series of amido spirorhodamine compounds—differing in the nature of the substituents of the amido group and in the rhodamine chromophore—in ethanol at room temperature in the presence of trifluoroacetic acid. A proton participates in the equilibrium between the spiro form and the open rhodamine form. The relaxation times in the dark or under continuous irradiation show a linear dependence on the proton concentration. The slopes of these plots show a linear free energy relation with the equilibrium constant of the transformation. A mechanism involving reversible reaction steps between four states: the two thermodynamically stable isomers, a protonated spiro form, and a deprotonated open form, can account for the kinetic observations in the dark and under irradiation.
This is a preview of subscription content, access via your institution.
References
Photochromism. Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, Amsterdam, 1990.
Organic Photochromic and Thermochromic Compounds, ed. J. C. Crano and R. J. Guglielmetti, Plenum Press, New York, 1999.
Photochromism. Molecules and switches. Thematic issue. Chem. Rev., 100 Issue 5, 2000.
G. Favaro and M. Irie, ed., Special issue on photochromism, J. Photochem. Photobiol., C: Photochem. Rev., 2011, 12, 71–236.
A. Natansohn and P. Rochon, Photoinduced motions in azo-containing polymers Chem. Rev. 2002 102 4139–4175.
K. Ichimura, Photoalignment of liquid-crystal systems Chem. Rev. 2000 100 1847–1874.
M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett and T. Ikeda, Photomobile polymer materials: towards light driven plastic motors Angew. Chem., Int. Ed. 2008 47 4986–4988.
D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martínez, S. R. White, J. S. Moore and N. R. Sottos, Force-induced activation of covalent bonds in mechanoresponsive polymeric materials Nature 2009 459 68–72.
S. W. Hell, Toward fluorescence nanoscopy Nat. Biotechnol. 2003 21 1347–1355.
S. W. Hell, Far-field optical nanoscopy Science 2007 316 1153–1158.
S. W. Hell, Microscopy and its focal switch Nat. Methods 2009 6 24–32.
K.-H. Knauer and R. Gleiter, Photochromism of rhodarnine derivatives Angew. Chem., Int. Ed. Engl. 1977 16 113.
J. Fölling, V. Belov, R. Kunetsky, R. Medda, A. Schönle, A. Egner, C. Eggeling, M. Bossi and S. W. Hell, Photochromic rhodamines provide nanoscopy with optical sectioning Angew. Chem., Int. Ed. 2007 46 6266–6270.
J. Fölling, V. Belov, D. Riedel, A. Schönle, A. Egner, C. Eggeling, M. Bossi and S. W. Hell, Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers ChemPhysChem 2008 9 321–326.
T. Karstens and K. Kobs, Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements J. Phys. Chem. 1980 84 1871–1872.
D. Magde, G. E. Rojas and P. G. Seybold, Solvent dependence of the fluorescence lifetimes of xanthene dyes Photochem. Photobiol. 1999 70 737–744.
H. Willwohl, J. Wolfrum and R. Gleiter, Kinetics and mechanism of the photochromism of N-phenyl-rhodaminelactame Laser Chem. 1989 10 63–72.
M. Bossi, J. Fölling, V. N. Belov, V. P. Boyarskiy, R. Medda, A. Egner, C. Eggeling, A. Schönle and S. W. Hell, Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species Nano Lett. 2008 8 2463–2468.
I. Testa, A. Schönle, C. v. Middendorff, C. Geisler, R. Medda, C. A. Wurm, A. C. Stiel, S. Jakobs, M. Bossi, C. Eggeling, S. W. Hell and A. Egner, Nanoscale separation of molecular species based on their rotational mobility Opt. Express 2008 16 21093–21104.
V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy and S. W. Hell, Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy Chem.-Eur. J. 2009 15 10762–10776.
M. Adamczyk and J. Grote, Efficient synthesis of rhodamine conjugates through the 2’-position Bioorg. Med. Chem. Lett. 2000 10 1539–1541.
M. Adamczyk and J. Grote, Synthesis of novel spirolactams by reaction of fluorescein methyl ester with amines Tetrahedron Lett. 2000 41 807–809.
M. Adamczyk and J. Grote, Synthesis of probes with broad pH range fluorescence Bioorg. Med. Chem. Lett. 2003 13 2327–2330.
J. T. C. Wojtyk, A. Wasey, N.-N. Xiao, P. M. Kazmaier, S. Hoz, C. Yu, R. P. Lemieux and E. Buncel, Elucidating the mechanisms of acidochromic spiropyran-merocyanine interconversion J. Phys. Chem. A 2007 111 2511–2516.
Q. A. Best, R. Xu, M. E. McCarroll, L. Wang and D. J. Dyer, Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH Org. Lett. 2010 12 3219–3221.
X. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives Chem. Rev. 2012 1121 1910–1956.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is published as part of a themed issue in honour of Professor Kurt Schaffner on the occasion of his 80th birthday.
Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp05402g
Rights and permissions
About this article
Cite this article
Montenegro, H., Di Paolo, M., Capdevila, D. et al. The mechanism of the photochromic transformation of spirorhodamines. Photochem Photobiol Sci 11, 1081–1086 (2012). https://doi.org/10.1039/c2pp05402g
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1039/c2pp05402g