Skip to main content
Log in

The mechanism of the photochromic transformation of spirorhodamines

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We investigate the equilibrium, kinetics, and mechanism of the photochromic transformation of a series of amido spirorhodamine compounds—differing in the nature of the substituents of the amido group and in the rhodamine chromophore—in ethanol at room temperature in the presence of trifluoroacetic acid. A proton participates in the equilibrium between the spiro form and the open rhodamine form. The relaxation times in the dark or under continuous irradiation show a linear dependence on the proton concentration. The slopes of these plots show a linear free energy relation with the equilibrium constant of the transformation. A mechanism involving reversible reaction steps between four states: the two thermodynamically stable isomers, a protonated spiro form, and a deprotonated open form, can account for the kinetic observations in the dark and under irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Photochromism. Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, Amsterdam, 1990.

    Google Scholar 

  2. Organic Photochromic and Thermochromic Compounds, ed. J. C. Crano and R. J. Guglielmetti, Plenum Press, New York, 1999.

    Google Scholar 

  3. Photochromism. Molecules and switches. Thematic issue. Chem. Rev., 100 Issue 5, 2000.

  4. G. Favaro and M. Irie, ed., Special issue on photochromism, J. Photochem. Photobiol., C: Photochem. Rev., 2011, 12, 71–236.

    Article  CAS  Google Scholar 

  5. A. Natansohn and P. Rochon, Photoinduced motions in azo-containing polymers Chem. Rev. 2002 102 4139–4175.

    Article  CAS  Google Scholar 

  6. K. Ichimura, Photoalignment of liquid-crystal systems Chem. Rev. 2000 100 1847–1874.

    Article  CAS  Google Scholar 

  7. M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett and T. Ikeda, Photomobile polymer materials: towards light driven plastic motors Angew. Chem., Int. Ed. 2008 47 4986–4988.

    Article  CAS  Google Scholar 

  8. D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martínez, S. R. White, J. S. Moore and N. R. Sottos, Force-induced activation of covalent bonds in mechanoresponsive polymeric materials Nature 2009 459 68–72.

    Article  CAS  Google Scholar 

  9. S. W. Hell, Toward fluorescence nanoscopy Nat. Biotechnol. 2003 21 1347–1355.

    Article  CAS  Google Scholar 

  10. S. W. Hell, Far-field optical nanoscopy Science 2007 316 1153–1158.

    Article  CAS  Google Scholar 

  11. S. W. Hell, Microscopy and its focal switch Nat. Methods 2009 6 24–32.

    Article  CAS  Google Scholar 

  12. K.-H. Knauer and R. Gleiter, Photochromism of rhodarnine derivatives Angew. Chem., Int. Ed. Engl. 1977 16 113.

    Article  Google Scholar 

  13. J. Fölling, V. Belov, R. Kunetsky, R. Medda, A. Schönle, A. Egner, C. Eggeling, M. Bossi and S. W. Hell, Photochromic rhodamines provide nanoscopy with optical sectioning Angew. Chem., Int. Ed. 2007 46 6266–6270.

    Article  Google Scholar 

  14. J. Fölling, V. Belov, D. Riedel, A. Schönle, A. Egner, C. Eggeling, M. Bossi and S. W. Hell, Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers ChemPhysChem 2008 9 321–326.

    Article  Google Scholar 

  15. T. Karstens and K. Kobs, Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements J. Phys. Chem. 1980 84 1871–1872.

    Article  CAS  Google Scholar 

  16. D. Magde, G. E. Rojas and P. G. Seybold, Solvent dependence of the fluorescence lifetimes of xanthene dyes Photochem. Photobiol. 1999 70 737–744.

    Article  CAS  Google Scholar 

  17. H. Willwohl, J. Wolfrum and R. Gleiter, Kinetics and mechanism of the photochromism of N-phenyl-rhodaminelactame Laser Chem. 1989 10 63–72.

    Article  CAS  Google Scholar 

  18. M. Bossi, J. Fölling, V. N. Belov, V. P. Boyarskiy, R. Medda, A. Egner, C. Eggeling, A. Schönle and S. W. Hell, Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species Nano Lett. 2008 8 2463–2468.

    Article  CAS  Google Scholar 

  19. I. Testa, A. Schönle, C. v. Middendorff, C. Geisler, R. Medda, C. A. Wurm, A. C. Stiel, S. Jakobs, M. Bossi, C. Eggeling, S. W. Hell and A. Egner, Nanoscale separation of molecular species based on their rotational mobility Opt. Express 2008 16 21093–21104.

    Article  CAS  Google Scholar 

  20. V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy and S. W. Hell, Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy Chem.-Eur. J. 2009 15 10762–10776.

    Article  CAS  Google Scholar 

  21. M. Adamczyk and J. Grote, Efficient synthesis of rhodamine conjugates through the 2’-position Bioorg. Med. Chem. Lett. 2000 10 1539–1541.

    Article  CAS  Google Scholar 

  22. M. Adamczyk and J. Grote, Synthesis of novel spirolactams by reaction of fluorescein methyl ester with amines Tetrahedron Lett. 2000 41 807–809.

    Article  CAS  Google Scholar 

  23. M. Adamczyk and J. Grote, Synthesis of probes with broad pH range fluorescence Bioorg. Med. Chem. Lett. 2003 13 2327–2330.

    Article  CAS  Google Scholar 

  24. J. T. C. Wojtyk, A. Wasey, N.-N. Xiao, P. M. Kazmaier, S. Hoz, C. Yu, R. P. Lemieux and E. Buncel, Elucidating the mechanisms of acidochromic spiropyran-merocyanine interconversion J. Phys. Chem. A 2007 111 2511–2516.

    Article  CAS  Google Scholar 

  25. Q. A. Best, R. Xu, M. E. McCarroll, L. Wang and D. J. Dyer, Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH Org. Lett. 2010 12 3219–3221.

    Article  CAS  Google Scholar 

  26. X. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives Chem. Rev. 2012 1121 1910–1956.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano L. Bossi.

Additional information

This article is published as part of a themed issue in honour of Professor Kurt Schaffner on the occasion of his 80th birthday.

Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp05402g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montenegro, H., Di Paolo, M., Capdevila, D. et al. The mechanism of the photochromic transformation of spirorhodamines. Photochem Photobiol Sci 11, 1081–1086 (2012). https://doi.org/10.1039/c2pp05402g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05402g

Navigation