Skip to main content
Log in

Direct aerobic photo-oxidative syntheses of aromatic methyl esters from methyl aromatics using anthraquinone-2,3-dicarboxylic acid as organophotocatalyst

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This paper reports a useful method for facile direct syntheses of aromatic methyl esters from methyl aromatics by aerobic photo-oxidation using anthraquinone-2,3-dicarboxylic acid as an organophotocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. Comprehensive Organic Transformations, ed. R. C. Larock, Wiley-VCH, New York, 2nd edn, 1999, p. 1625

    Google Scholar 

  2. March’s Advanced Organic Chemistry, ed. M. B. Smith and J. March, John Wiley & Sons, Inc., Hoboken, 6th edn, 2007, p. 1745.

    Google Scholar 

  3. Greene’s Protective Groups in Organic Synthesis, ed. P. G. M. Wutz and T. W. Greene, John Wiley & Sons, Inc., Hoboken, 4th edn, 2006, pp. 538–543.

    Google Scholar 

  4. Comprehensive Organic Transformations, ed. R. C. Larock, Wiley-VCH, New York, 2nd edn, 1999, p. 1656

    Google Scholar 

  5. March’s Advanced Organic Chemistry, ed. M. B. Smith and J. March, John Wiley & Sons, Inc., Hoboken, 6th edn, 2007, p. 1769.

    Google Scholar 

  6. M. Miura, M. Nojima, S. Kusabayashi, J. Chem. Soc., Perkin Trans. 1, 1980, 2909–2913

    Google Scholar 

  7. K. G. Brinkhaus, E. Steckhan, D. Degner, Tetrahedron, 1986, 42, 553–560

    Article  Google Scholar 

  8. R. Curci, L. D’Accolti, M. Fiorentino, C. Fusco, W. Adam, M. E. González-Nunez, R. Mello, Tetrahedron Lett., 1992, 33, 4225–4228

    Article  CAS  Google Scholar 

  9. B. A. Marples, J. P. Muxworthy, K. H. Baggaley, Synlett, 1992, 646.

    Google Scholar 

  10. T. Sueda, S. Fukuda, M. Ochiai, Org. Lett., 2001, 3, 2387–2390

    Article  CAS  PubMed  Google Scholar 

  11. B. Karimi, J. Rajabi, Synthesis, 2003, 2373–2377

    Google Scholar 

  12. B. Karimi, J. Rajabi, J. Mol. Catal. A: Chem., 2005, 226, 165–169.

    Article  CAS  Google Scholar 

  13. H. Tohma, T. Maegawa, Y. Kita, Synlett, 2003, 723–725

    Google Scholar 

  14. J. S. Foot, H. Kanno, G. M. P. Giblin, R. J. K. Taylor, Synthesis, 2003, 1055–1064

    Google Scholar 

  15. G. A. Hiegel, C. B. Gilley, Synth. Commun., 2003, 33, 2003–2009

    Article  CAS  Google Scholar 

  16. N. Mori, H. Togo, Synlett, 2004, 880–882

    Google Scholar 

  17. N. N. Karade, G. B. Tiwari, D. B. Huple, Synlett, 2005, 2039–2042

    Google Scholar 

  18. N. Mori, H. Togo, Tetrahedron, 2005, 61, 5915–5925

    Article  CAS  Google Scholar 

  19. T. M. A. Shaikh, L. Emmanuvel, A. Sudalai, Synth. Commun., 2007, 37, 2641–2646

    Article  CAS  Google Scholar 

  20. N. A. Owston, A. J. Parker, J. M. J. Williams, Chem. Commun., 2008, 624–625

    Google Scholar 

  21. F.-Z. Su, J. Ni, H. Sao, Y. Cao, H.-Y. He, K.-N. Fan, Chem.–Eur. J., 2008, 14, 7131–7135

    Article  CAS  PubMed  Google Scholar 

  22. I. S. Nielsen, E. Taarning, K. Egeblad, R. Madsen, C. H. Christensen, Catal. Lett., 2007, 116, 35–40

    Article  CAS  Google Scholar 

  23. X.-L. Liu, S.-Y. Lin, S.-R. Sheng, M.-H. Wei, B. Gong, J. Chin. Chem. Soc. (Taipei), 2007, 54, 1119–1122

    Article  CAS  Google Scholar 

  24. S. K. Klitgaard, A. T. DeLa Riva, S. Helveg, R. M. Werchmeister, C. H. Christensen, Catal. Lett., 2008, 126, 213–217

    Article  CAS  Google Scholar 

  25. N. A. Owston, T. D. Nixon, A. J. Parker, M. K. Whittlesey, J. M. J. Williams, Synthesis, 2009, 1578–1581

    Google Scholar 

  26. K. R. Reddy, M. Venkateshwar, C. U. Maheswari, S. Prashanthi, Synth. Commun., 2009, 40, 186–195

    Article  CAS  Google Scholar 

  27. H. Miyamura, T. Yasukawa, S. Kobayashi, Green Chem., 2010, 12, 776–778

    Article  CAS  Google Scholar 

  28. K. Kaizuka, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc., 2010, 132, 15096–15098

    Article  CAS  PubMed  Google Scholar 

  29. F. Luo, C. Pan, J. Cheng, F. Chen, Tetrahedron, 2011, 67, 5878–5882

    Article  CAS  Google Scholar 

  30. N. Yamamoto, Y. Obora, Y. Ishii, J. Org. Chem., 2011, 76, 2937–2941

    Article  CAS  PubMed  Google Scholar 

  31. C. Liu, J. Wang, L. Meng, Y. Deng, Y. Li, A. Lei, Angew. Chem., Int. Ed., 2011, 50, 5144–5148

    Article  CAS  Google Scholar 

  32. S. Gowrisankar, H. Neumann, M. Beller, Angew. Chem., Int. Ed., 2011, 50, 5139–5143.

    Article  CAS  Google Scholar 

  33. A. Itoh, S. Hashimoto, T. Kodama, Y. Masaki, Synlett, 2005, 2107–2109

    Google Scholar 

  34. A. Itoh, S. Hashimoto, Y. Masaki, Synlett, 2005, 2639–2640

    Google Scholar 

  35. S. Hirashima, A. Itoh, Synthesis, 2006, 1757–1759

    Google Scholar 

  36. S. Hirashima, S. Hashimoto, Y. Masaki, A. Itoh, Tetrahedron, 2006, 62, 7887–7891

    Article  CAS  Google Scholar 

  37. S. Hirashima, A. Itoh, Photochem. Photobiol. Sci., 2007, 6, 521–524

    Article  CAS  PubMed  Google Scholar 

  38. S. Hirashima, A. Itoh, Green Chem., 2007, 9, 318–320

    Article  CAS  Google Scholar 

  39. S. Hirashima, A. Itoh, J. Synth. Org. Chem. Jpn., 2008, 66, 748–756.

    Article  CAS  Google Scholar 

  40. S. Hirashima, T. Nobuta, N. Tada, T. Miura, A. Itoh, Org. Lett., 2010, 12, 3645–3647.

    Article  CAS  PubMed  Google Scholar 

  41. When the oxidative esterification of 4-tert-butyltoluene (1a) was carried out using CBr4 (0.1 equiv) in EtOH (1 mL) under molecular oxygen irradiated with fluorescent lamps for 24 h, ethyl benzoate (2l) was obtained only in 1% yield with recovered starting material in 72% yield.

  42. H. Görner, Photochem. Photobiol., 2003, 77, 171–179

    Article  PubMed  Google Scholar 

  43. Y. Hou, L. A. Huck, P. Wan, Photochem. Photobiol. Sci., 2009, 8, 1408–1415.

    Article  CAS  PubMed  Google Scholar 

  44. N. Tada, K. Hattori, T. Nobuta, T. Miura, A. Itoh, Green Chem., 2011, 13, 1669–1671.

    Article  CAS  Google Scholar 

  45. Aerobic photo-oxidation of toluenes to aldehydes catalyzed by organophotocatalyst have been reported, see: K. Ohkubo, S. Fukuzumi, Org. Lett., 2000, 2, 3647–3650

    Article  CAS  PubMed  Google Scholar 

  46. K. Ohkubo, K. Suga, K. Morikawa, S. Fukuzumi, J. Am. Chem. Soc., 2003, 125, 12850–12859.

    Article  CAS  PubMed  Google Scholar 

  47. Anthraquinone derivatives absorb visible light, see: UV-vis spectra of anthraquinone derivatives in supporting information.

  48. When the oxidative esterification of 4-tert-butyltoluene (1a) was carried out using CBr4 (0.1 equiv), EtOH (2 mL) in the presence of CF2CO2H (0.3 equiv) under molecular oxygen irradiated with fluorescent lamps for 24 h, ethyl benzoate (2l) was obtained only in 2% yield with recovered starting material in 69% yield.

  49. Primary electron transfer from the toluene derivatives to AQN* is not excluded.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akichika Itoh.

Additional information

† Electronic supplementary information (ESI) available. See DOI: reaction was carried out under an Ar atmosphere. 10.1039/c2pp05387j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, N., Ikebata, Y., Nobuta, T. et al. Direct aerobic photo-oxidative syntheses of aromatic methyl esters from methyl aromatics using anthraquinone-2,3-dicarboxylic acid as organophotocatalyst. Photochem Photobiol Sci 11, 616–619 (2012). https://doi.org/10.1039/c2pp05387j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05387j

Navigation