Skip to main content
Log in

Hydrogen-bonding modulation of excited-state properties of flavins in a model of aqueous confined environment

Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The singlet and triplet excited states properties of lumiflavin (LF), riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) in reversed micelles (RM) of sodium docusate (AOT) in n-hexane solutions were evaluated as a function of the water to surfactant molar ratio, w0 = [H2O]/[AOT], by both steady-state and time-resolved absorption and fluorescence spectroscopy. The results indicated that hydrogen-bonding interactions between the isoalloxazine ring of the flavins with the water molecules of the micellar interior play a crucial role on the modulation of the excited state properties of the flavins. Fluorescence dynamic experiments in the RM, allowed the calculation of similar values for both the internal rotational time of the flavins (θi) and the hydrogen-bonding relaxation time (τHB), e.g. 7 and 1.5 ns at w0 = 1 and 20, respectively. In turn, the triplet state lifetimes of the flavins were also enlarged in RM solutions at low w0, without modifications of their quantum yields. A hydrogen bonding relaxation model is proposed to explain the singlet excited state properties of the flavins, while the changes of the triplet state decays of the flavins were related with the global composition and strength of the hydrogen bonding network inside of the RM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. Bornemann, Flavoenzymes that catalyse reactions with no net redox change Nat. Prod. Rep. 2002 19 761–772.

    Article  CAS  PubMed  Google Scholar 

  2. A. Losi, Flavin-based blue-light photosensors: a photobiophysics update Photochem. Photobiol. 2007 83 1283–1300.

    Article  CAS  PubMed  Google Scholar 

  3. M. A. Montenegro, I. L. Nunes, A. Z. Mercadante and C. D. Borsarelli, Photoprotection of vitamins in skimmed milk by aqueous soluble lycopene - gum arabic microcapsule J. Agric. Food Chem. 2007 55 323–329.

    Article  CAS  Google Scholar 

  4. I. Ahmad, Q. Fasihullah, A. Noor, I. A. Ansari and Q. N. M. Ali, Photolysis of riboflavin in aqueous solution: a kinetic study Int. J. Pharm. 2004 280 199–208.

    Article  CAS  PubMed  Google Scholar 

  5. P. F. Heelis, The photophysical and photochemical properties of flavins (isoalloxazines) Chem. Soc. Rev. 1982 11 15–39.

    Article  CAS  Google Scholar 

  6. K. Yagi, N. Ohishi, K. Nishimoto, J. D. Choi and P. S. Song, Effect of hydrogen-bonding on electronic-spectra and reactivity of flavins Biochemistry 1980 19 1553–1557.

    Article  CAS  PubMed  Google Scholar 

  7. F. Müller, S. G. Mayhew and V. Massey, On the effect of temperature on the absorption spectra of free and protein-bound flavines Biochemistry 1973 12 4654–4662.

    Article  PubMed  Google Scholar 

  8. E. Sikorska, I. V. Khmelinskii, W. Prukala, S. L. Williams, M. Patel, D. R. Worrall, J. L. Bourdelande, J. Koput and M. Sikorski, Spectroscopy and photophysics of lumiflavins and lumichromes J. Phys. Chem. A 2004 108 1501–1508.

    Article  CAS  Google Scholar 

  9. M. Kowalczyk, E. Sikorska, I. V. Khmelinskii, J. Komasa, M. Insinska-Rak and M. Sikorski, Spectroscopy and photophysics of flavin-related compounds: isoalloxazines J. Mol. Struct. (THEOCHEM) 2005 756 47–54.

    Article  CAS  Google Scholar 

  10. K. Zenichowski, M. Gothe and P. Saalfrank, Exciting flavins: absorption spectra and spin-orbit coupling in light-oxygen-voltage (LOV) domains J. Photochem. Photobiol., A 2007 190 290–300.

    Article  CAS  Google Scholar 

  11. P. Zirak, A. Penzkofer, T. Mathes and P. Hegemann, Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents Chem. Phys. 2009 358 111–122.

    Article  CAS  Google Scholar 

  12. Y. T. Kao, C. Saxena, T. F. He, L. J. Guo, L. J. Wang, A. Sancar and D. P. Zhong, Ultrafast dynamics of flavins in five redox states J. Am. Chem. Soc. 2008 130 13132–13139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. W. Schmidt, Environment and the rotational motion of amphiphilic flavins in artificial membrane-vesicles as studied by fluorescence J. Membr. Biol. 1979 47 1–25.

    Article  CAS  PubMed  Google Scholar 

  14. W. Schmidt, Further photophysical and photochemical characterization of flavins associated with single-shelled vesicles J. Membr. Biol. 1983 76 73–82.

    Article  CAS  Google Scholar 

  15. A. J. W. G. Visser, J. S. Santema, A. van Hoek, Spectroscopic and dynamic characterization of FMN in reversed micelles entrapped water pools Photochem. Photobiol. 1984 39 11–16.

    Article  CAS  Google Scholar 

  16. A. J. W. G. Visser, K. Vos, J. S. Santema, J. Bouwstra, A. van Hoek, Static and time-resolved fluorescence of an amphiphilic flavin in Aerosol OT reversed micelles Photochem. Photobiol. 1987 46 457–461.

    Article  CAS  Google Scholar 

  17. Reversed Micelles, ed. P. L. Luisi and B. E. Straub, Plenum Press, New York, 1984.

    Google Scholar 

  18. A. Maitra, Determination of size parameters of water-Aerosol OT-oil reverse micelles from their nuclear magnetic resonance data J. Phys. Chem. 1984 88 5122–5125.

    Article  CAS  Google Scholar 

  19. M. Zulauf and H. F. Eicke, Inverted micelles and microemulsions in the ternary-system H2O-Aerosol-OT-iso-octane as studied by photon correlation spectroscopy J. Phys. Chem. 1979 83 480–486.

    Article  CAS  Google Scholar 

  20. M. Wong, J. K. Thomas and T. Nowak, Structure and state of H2O in reversed micelles. 3 J. Am. Chem. Soc. 1977 99 4730–4736.

    Article  CAS  Google Scholar 

  21. J. Lang, A. Jada and A. Malliaris, Structure and dynamics of water-in-oil droplets stabilized by sodium bis(2-ethylhexyl) sulfosuccinate J. Phys. Chem. 1988 92 1946–1953.

    Article  CAS  Google Scholar 

  22. E. Keh and B. Valeur, Investigation of water-containing inverted micelles by fluorescence polarization - determination of size and internal fluidity J. Colloid Interface Sci. 1981 79 465–478.

    Article  CAS  Google Scholar 

  23. N. Wittouck, R. M. Negri, M. Ameloot and F. C. Deschryver, AOT reversed micelles investigated by fluorescence anisotropy of cresyl violet J. Am. Chem. Soc. 1994 116 10601–10611.

    Article  CAS  Google Scholar 

  24. P. E. Zinsli, Inhomogeneous interior of Aerosol OT microemulsions probed by fluorescence and polarization decay J. Phys. Chem. 1979 83 3223–3231.

    Article  CAS  Google Scholar 

  25. C. D. Borsarelli and S. E. Braslavsky, The nature of the water structure inside the pools of reverse micelles sensed by laser-induced optoacoustic spectroscopy (LIOAS) J. Phys. Chem. B 1997 101 6036–6042.

    Article  CAS  Google Scholar 

  26. Z. L. Lai and P. Y. Wu, Investigation on the conformations of AOT in water-in-oil microemulsions using 2D-ATR-FTIR correlation spectroscopy J. Mol. Struct. 2008 883 236–241.

    Article  CAS  Google Scholar 

  27. J. H. Brannon and D. Magde, Absolute quantum yield determination by thermal blooming: fluorescein J. Phys. Chem. 1978 82 705–709.

    Article  CAS  Google Scholar 

  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science+Business Media, LLC, Singapore, 3st edn, 2006.

    Book  Google Scholar 

  29. A. S. R. Koti, M. M. G. Krishma and N. Periasamy, Time-resolved area-normalized emission spectroscopy (TRANES): a novel method for confirming emission from two excited states J. Phys. Chem. A 2001 105 1767–1771.

    Article  CAS  Google Scholar 

  30. L. Crovetto, V. Martinez-Junza and S. E. Braslavsky, Entropy changes drive the electron transfer reaction of triplet flavin mononucleotide from aromatic acids in cation-organized aqueous media. A laser induced optoacoustic study Photochem. Photobiol. 2006 82 281–290.

    Article  CAS  PubMed  Google Scholar 

  31. T. B. Melø, M. A. Ionescu, G. W. Haggquist and K. R. Naqvi, Hydrogen abstraction by triplet flavins. I time-resolved multi-channel absorption spectra of flash-irradiated riboflavin solutions in water Spectrochim. Acta, Part A 1999 55 2299–2307.

    Article  Google Scholar 

  32. J. K. Eweg, F. Müller, A. J. W. G. Visser, C. Veeger, D. Bebelaar, J. D. W. van Voorst, Molecular luminescence of some isoalloxazines in apolar solvents at various temperatures Photochem. Photobiol. 1979 30 463–471.

    Article  CAS  Google Scholar 

  33. C. D. Borsarelli, J. J. Cosa and C. M. Previtali, Exciplex formation between pyrene derivatives and N,N-dimethylaniline in aerosol OT reversed micelles Langmuir 1992 8 1070–1075.

    Article  CAS  Google Scholar 

  34. E. Sikorska, I. V. Khmelinskii, D. R. Worrall, J. Koput and M. Sikorski, Spectroscopy and photophysics of iso- and alloxazines: experimental and theoretical study J. Fluoresc. 2004 14 57–64.

    Article  CAS  PubMed  Google Scholar 

  35. S. Salzmann and C. M. Marian, Effects of protonation and deprotonation on the excitation energies of lumiflavin Chem. Phys. Lett. 2008 463 400–404.

    Article  CAS  Google Scholar 

  36. S. D. M. Islam, T. Susdorf, A. Penzkofer and P. Hegemann, Fluorescence quenching of flavin adenine dinucleotide in aqueous solution by pH dependent isomerisation and photo-induced electron transfer Chem. Phys. 2003 295 137–149.

    Article  CAS  Google Scholar 

  37. N. Mataga, Y. Kaifu and M. Koizumi, Solvent effects upon fluorescence spectra and the dipole moments of excited molecules Bull. Chem. Soc. Jpn. 1956 29 465–470.

    CAS  Google Scholar 

  38. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 3st edn, 2003.

    Google Scholar 

  39. A. J. W. G. Visser, K. Vos, A. van Hoek and J. S. Santema, Time-resolved fluorescence depolarization of rhodamine B and (octadecyl)rhodamine B in triton X-100 micelles and aerosol OT reversed micelles J. Phys. Chem. 1988 92 759–765.

    Article  CAS  Google Scholar 

  40. N. V. Shcherbatska, A. van Hoek, P. I. H. Bastiaens and A. J. W. G. Visser, Time-resolved fluorescence relaxation of 3-methyllumiflavin in polar solution J. Fluoresc. 1995 5 171–177.

    Article  CAS  PubMed  Google Scholar 

  41. C. D. Borsarelli, J. J. Cosa and C. M. Previtali, Photoinduced charge separation in reverse micelles prepared with benzylhexadecyldimethylammonium chloride (BHDC). The electron-transfer reaction between pyrene and N,N’-dimethylaniline Photochem. Photobiol. 1998 68 438–446.

    CAS  Google Scholar 

  42. M. S. Altamirano, C. D. Borsarelli, J. J. Cosa and C. M. Previtali, Influence of polarity and viscosity of the micellar interface on the fluorescence quenching of pyrenic compounds by indole derivatives in AOT reverse micelles solutions J. Colloid Interface Sci. 1998 205 390–396.

    Article  CAS  PubMed  Google Scholar 

  43. A. J. W. G. Visser, Kinetic of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence Photochem. Photobiol. 1984 40 703–706.

    Article  CAS  PubMed  Google Scholar 

  44. G. F. Li and K. D. Glusac, The role of adenine in fast excited-state deactivation of FAD: a femtosecond mid-IR transient absorption study J. Phys. Chem. B 2009 113 9059–9061.

    Article  CAS  PubMed  Google Scholar 

  45. S. Raffelberg, M. Mansurova, W. Gärtner and A. Losi, Modulation of the photocycle of a LOV domain photoreceptor by hydrogen-bonding network J. Am. Chem. Soc. 2011 113 5346–5356.

    Article  CAS  Google Scholar 

  46. A. Chattopadhyay, S. Mukherjee and H. Raghuraman, Reverse micellar organization and dynamics: a wavelength-selective fluorescence approach J. Phys. Chem. B 2002 106 13002–13009.

    Article  CAS  Google Scholar 

  47. M. Novaira, F. Moyano, M. A. Biasutti, J. J. Silber and N. M. Correa, An example of how to use AOT reverse micelle interfaces to control a photoinduced intramolecular charge-transfer process Langmuir 2008 24 4637–4646.

    Article  CAS  PubMed  Google Scholar 

  48. P. A. W. van der Berg, J. Widengren, M. A. Hink, R. Rigler and A. J. W. G. Visser, Fluorescence correlation spectroscopy of flavins and flavoproteins: photochemical and photophysical aspects Spectrochim. Acta, Part A 2001 57 2135–2144.

    Article  Google Scholar 

  49. M. Green and G. Tollin, Flash photolysis of flavins. II. Quenching of the photoreactions Photochem. Photobiol. 1968 7 145–153.

    Article  CAS  PubMed  Google Scholar 

  50. I. Ahmad and F. H. M. Vaid, in Flavins: Photochemsitry and Photobiology, ed. E. Silva and A. M. Edwards, Comprehensive series in Photochemistry and Photobiology - Vol 6, Royal Society of Chemistry, 2006, ch. 2, pp. 13–40.

    Google Scholar 

  51. L. Valle and C. D. Borsarelli, Photophysical Characterization of Flavins Cofactors in Organized Media. XXVIII Argentinean Conference of Chemistry, National University of Lanús, Lanús, Argentina, September 13th-16th, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio D. Borsarelli.

Additional information

This article is published as part of a themed issue in honour of Professor Kurt Schaffner on the occasion of his 80th birthday.

Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp05385c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valle, L., Morán Vieyra, F.E. & Borsarelli, C.D. Hydrogen-bonding modulation of excited-state properties of flavins in a model of aqueous confined environment. Photochem Photobiol Sci 11, 1051–1061 (2012). https://doi.org/10.1039/c2pp05385c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05385c

Navigation