Skip to main content
Log in

A caged cyanide

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A photoactivatable caged cyanide, 1-(2-nitrophenyl)ethyl (NPE) cyanide, was synthesized, which upon irradiation in the near UV releases cyanide. It is demonstrated that the compound can be used to induce formation of the FeIII–CN- complex in the heme protein nitrophorin 4 from Rhodnius prolixus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. S. R. Adams, R. Y. Tsien, Controlling cell chemistry with caged compounds, Annu. Rev. Physiol., 1993, 55, 755–784

    Article  CAS  Google Scholar 

  2. J. H. Kaplan, Photochemical manipulation of divalent-cation levels, Annu. Rev. Physiol., 1990, 52, 897–914.

    Article  CAS  Google Scholar 

  3. J. H. Kaplan, B. Forbush, J. F. Hoffman, Rapid photolytic release of ATP from a protected analogue: utilization by the Na?:?K pump of human red blood cell ghosts, Biochemistry, 1978, 17, 1929–1935.

    CAS  PubMed  Google Scholar 

  4. J. A. MacCray, D. R. Trentham, Properties and uses of photoreactive caged compounds, Annu. Rev. Biophys. Biophys. Chem., 1989, 18, 239–270.

    Article  Google Scholar 

  5. Caged Compounds, Methods Enzymol, ed. G. Marriott, Academic Press, San Diego, 1998, vol. 291.

    Google Scholar 

  6. A. P. Pellicciolo, J. Wirz, Photoremovable protecting groups: reaction mechanisms and applications, Photochem. Photobiol. Sci., 2002, 1, 441–458.

    Article  Google Scholar 

  7. G. Mayer, A. Heckel, Biologically active moleculaes with a “light switch”, Angew. Chem., Int. Ed., 2006, 45, 4900–4921.

    Article  CAS  Google Scholar 

  8. H.-M. Lee, D. R. Larson, D. S. Lawrence, Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds, ACS Chem. Biol., 2009, 4, 409–427.

    Article  CAS  Google Scholar 

  9. E. M. Maes, F. A. Walker, W. R. Montfort, R. S. Czernuszewicz, Resonance Raman spectroscopic study of nitrophorin 1, a nitric oxide-binding heme protein from Rhodnius prolixus, and its nitrosyl and cyano adducts, J. Am. Chem. Soc., 2001, 123, 11664–11672.

    Article  CAS  Google Scholar 

  10. A. Barth, J. E. T. Corrie, Characterization of a new caged proton capable of inducing large pH jumps, Biophys. J., 2002, 83, 2864–2871

    Article  CAS  Google Scholar 

  11. S. Abbruzzetti, S. Sottini, C. Viappiani, J. E. T. Corrie, Kinetics of proton release after flash photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) in aqueous solution, J. Am. Chem. Soc., 2005, 127, 9865–9874.

    Article  CAS  Google Scholar 

  12. S. Abbruzzetti, S. Sottini, C. Viappinani, C. Correia, Acid-induced unfolding of myoglobin triggered by a laser pH jump method, Photochem. Photobiol. Sci., 2006, 5, 621–628.

    Article  CAS  Google Scholar 

  13. M. Schwörer, J. Wirz, Photochemical reaction mechanism of 2-nitrobenzyl compounds in solution. 1. 2-nitrotoluene: thermodynamic and kinetic parameters of the aci-nitro tautomer, Helv. Chim. Acta, 2001, 84, 551–606

    Article  Google Scholar 

  14. G. Wettermark, E. D. Black, L. Dogliotti, Reactions of photochemically formed transients from 2-nitrotoluene, Photochem. Photobiol., 1965, 4, 229–239.

    Article  CAS  Google Scholar 

  15. J. W. Walker, G. P. Reid, J. A. McCray, D. R. Trentham, Photolabile 1-(2-nitrophenyl)ethyl phosphate esters of adenine nucleotide analogs: synthesis and mechanism of photolysis, J. Am. Chem. Soc., 1988, 110, 7170–7177.

    Article  CAS  Google Scholar 

  16. S. Abbruzzetti, S. Bruno, S. Fagiano, E. Grandi, A. Mozzarelli, C. Viappiani, Monitoring haem proteins at work with nanosecond laser flash photolysis, Photochem. Photobiol. Sci., 2006, 5, 1109–1120.

    Article  CAS  Google Scholar 

  17. M. J. Lehane, The Biology of Blood-Sucking in Insects, Cambridge University Press, Cambridge (United Kingdom), 2nd edn, 2005

    Book  Google Scholar 

  18. R. H. Nussenzveig, D. L. Bentley, J. M. C. Ribeiro, Nitric oxide loading of the salivary nitric-oxide-carrying hemoproteins (nitrophorins) in the blood-sucking bug Rhodnius prolixus, J. Exp. Biol., 1995, 198, 1093–1098.

    Article  CAS  Google Scholar 

  19. F. A. Walker, Nitric oxide interaction with insect nitrophorins and thoughts on the electron configuration of the FeNO6 complex, J. Inorg. Biochem., 2005, 99, 216–236.

    Article  CAS  Google Scholar 

  20. M. Knipp, C. He, H. Ogata, Nitrite disproportionation reaction: investigations on the mechanism of the conversion of nitrite into nitric oxide at the ferriheme center of nitrophorins at blood plasma pH, Nitric Oxide, 2011, 24, S33–S34.

    Article  Google Scholar 

  21. M. Knipp, C. He, Nitrophorins: nitrite disproportionation reaction and other novel functionalities of insect heme-based nitric oxide transport proteins, IUBMB Life, 2011, 63, 304–312.

    Article  CAS  Google Scholar 

  22. R. E. Berry, M. N. Shokhirev, A. Y. W. Ho, F. Yang, T. K. Shokhireva, H. Zhang, A. Weichsel, W. R. Montfort, F. A. Walker, Effect of mutation of carboxyl side-chain amino acids near the heme on the midpoint potentials and ligand binding constants of nitrophorin 2 and its NO, histamine, and imidazole complexes, J. Am. Chem. Soc., 2009, 131, 2313–2327.

    Article  CAS  Google Scholar 

  23. J. H. Enemark, R. D. Feltham, Principles of structure, bonding, and reactivity for metal nitrosyl complexes, Coord. Chem. Rev., 1974, 13, 339–406.

    Article  CAS  Google Scholar 

  24. S. Banala, A. Arnold, K. Johnsson, Caged substrates for protein labeling and immobilization, ChemBioChem, 2008, 9, 38–41.

    Article  CAS  Google Scholar 

  25. A. Weichsel, J. F. Andersen, D. E. Champagne, F. A. Walker, W. R. Montfort, Crystal structures of a nitric oxide transport protein from a blood-sucking insect, Nat. Struct. Biol., 1998, 5, 304–309

    Article  CAS  Google Scholar 

  26. C. He, H. Ogata, M. Knipp, Formation of the complex of nitrite with the ferriheme b ß-barrel proteins nitrophorin 4 and nitrophorin 7, Biochemistry, 2010, 49, 5841–5851.

    Article  CAS  Google Scholar 

  27. C. He, S. Neya, M. Knipp, Breaking the proximal FeII–NHis bond in heme proteins through local structural tension: lessons from the heme b proteins nitrophorin 4, nitrophorin 7, and related site-directed mutant proteins, Biochemistry, 2011, 50, 8559–8575.

    Article  CAS  Google Scholar 

  28. R. E. Berry, X. D. Ding, T. K. Shokhireva, A. Weichsel, W. R. Montfort, F. A. Walker, Axial ligand complexes of the Rhodnius nitrophorins: reduction potentials, binding constants, EPR spectra, and structures of the 4-iodopyrazole and imidazole complexes of NP4, JBIC, J. Biol. Inorg. Chem., 2004, 9, 135–144

    Article  CAS  Google Scholar 

  29. M. Knipp, F. Yang, R. E. Berry, H. Zhang, M. N. Shokhirev, F. A. Walker, Spectroscopic and functional characterization of nitrophorin 7 from the blood-feeding insect Rhodnius prolixus reveals an important role of its isoform-specific N-terminus for proper protein function, Biochemistry, 2007, 46, 13254–13268.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Knipp or Cristiano Viappiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knipp, M., Taing, J.J., He, C. et al. A caged cyanide. Photochem Photobiol Sci 11, 620–622 (2012). https://doi.org/10.1039/c2pp05359d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05359d

Navigation