Skip to main content
Log in

Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Nanoparticle (NP)-based targeted drug delivery involves cell-specific targeting followed by a subsequent therapeutic action from the therapeutic carried by the NP system. NPs conjugated with methotrexate (MTX), a potent inhibitor of dihydrofolate reductase (DHFR) localized in cytosol, have been under investigation as a delivery system to target cancer cells to enhance the therapeutic index of methotrexate, which is otherwise non-selectively cytotoxic. Despite improved therapeutic activity from MTX-conjugated NPs in vitro and in vivo, the therapeutic action of these conjugates following cellular entry is poorly understood; in particular it is unclear whether the therapeutic activity requires release of the MTX. This study investigates whether MTX must be released from a nanoparticle in order to achieve the therapeutic activity. We report herein light-controlled release of methotrexate from a dendrimer-based conjugate and provide evidence suggesting that MTX still attached to the nanoconjugate system is fully able to inhibit the activity of its enzyme target and the growth of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. I. Ojima, Guided Molecular Missiles for Tumor-Targeting Chemotherapy;Case Studies Using the Second-Generation Taxoids as Warheads, Acc. Chem. Res., 2008, 41, 108–119.

    Article  CAS  PubMed  Google Scholar 

  2. S. K. Ghosh, A. Pal, S. Kundu, S. Nath, T. Pal, Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles, Chem. Phys. Lett., 2004, 395, 366–372.

    Article  CAS  Google Scholar 

  3. R. P. Feazell, N. Nakayama-Ratchford, H. Dai, S. J. Lippard, Soluble Single-Walled Carbon Nanotubes as Longboat Delivery Systems for Platinum(IV) Anticancer Drug Design, J. Am. Chem. Soc., 2007, 129, 8438–8439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. M. Dubowchik, M. A. Walker, Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs, Pharmacol. Ther., 1999, 83, 67–123.

    Article  CAS  PubMed  Google Scholar 

  5. I. J. Majoros, C. R. Williams, A. Becker, J. R. Baker Jr, Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2009, 1, 502–510.

    CAS  Google Scholar 

  6. P. S. Low, S. A. Kularatne, Folate-targeted therapeutic and imaging agents for cancer, Curr. Opin. Chem. Biol., 2009, 13, 1–7.

    Article  CAS  Google Scholar 

  7. T. Dvir, M. R. Banghart, B. P. Timko, R. Langer, D. S. Kohane, Photo-Targeted Nanoparticles, Nano Lett., 2009, 10, 250–254.

    Article  CAS  Google Scholar 

  8. I. J. Majoros, A. Myc, T. Thomas, C. B. Mehta, J. R. Baker, PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer Therapy: Synthesis, Characterization, and Functionality, Biomacromolecules, 2006, 7, 572–579.

    Article  CAS  PubMed  Google Scholar 

  9. T. P. Thomas, I. J. Majoros, A. Kotlyar, J. F. Kukowska-Latallo, A. Bielinska, A. Myc, J. R. Baker Jr, Targeting and Inhibition of Cell Growth by an Engineered Dendritic Nanodevice, J. Med. Chem., 2005, 48, 3729–3735.

    Article  CAS  PubMed  Google Scholar 

  10. T. P. Thomas, S. K. Choi, M.-H. Li, A. Kotlyar, J. R. Baker Jr, Design of Riboflavin-presenting PAMAM Dendrimers as a New Nanoplatform for Cancer-targeted Delivery, Bioorg. Med. Chem. Lett., 2010, 20, 5191–5194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. I. J. Majoros, T. P. Thomas, C. B. Mehta, J. R. Baker Jr, Poly(amidoamine) Dendrimer-Based Multifunctional Engineered Nanodevice for Cancer Therapy, J. Med. Chem., 2005, 48, 5892–5899.

    Article  CAS  PubMed  Google Scholar 

  12. T. Etrych, T. Mrkvan, B. Ríhová, K. Ulbrich, Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy, J. Controlled Release, 2007, 122, 31–38.

    Article  CAS  Google Scholar 

  13. S. K. Choi, T. Thomas, M. Li, A. Kotlyar, A. Desai, J. R. Baker Jr, Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate, Chem. Commun., 2010, 46, 2632–2634.

    Article  CAS  Google Scholar 

  14. L. M. Bareford, P. W. Swaan, Endocytic mechanisms for targeted drug delivery, Adv. Drug Delivery Rev., 2007, 59, 748–758.

    Article  CAS  Google Scholar 

  15. I. Majoros and J. Baker Jr, Dendrimer-Based Nanomedicine, Pan Stanford, Hackensack, NJ, 2008; p 436.

    Book  Google Scholar 

  16. A. Joshi, D. Vance, P. Rai, A. Thiyagarajan, R. S. Kane, The Design of Polyvalent Therapeutics, Chem.–Eur. J., 2008, 14, 7738–7747.

    Article  CAS  PubMed  Google Scholar 

  17. A. Plantinga, A. Witte, M.-H. Li, A. Harmon, S. K. Choi, M. M. Banaszak Holl, B. G. Orr, J. R. Baker Jr, K. Sinniah, Bioanalytical Screening of Riboflavin Antagonists for Targeted Drug Delivery—A Thermodynamic and Kinetic Study, ACS Med. Chem. Lett., 2011, 2, 363–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. R. Schnell, H. J. Dyson, P. E. Wright, Structure, dynamics, and catalytic function of dihydrofolate, Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 119–140.

    Article  CAS  PubMed  Google Scholar 

  19. R. V. Mauldin, M. J. Carroll, A. L. Lee, Dynamic Dysfunction in Dihydrofolate Reductase Results from Antifolate Drug Binding: Modulation of Dynamics within a Structural State, Structure, 2009, 17, 386–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. W. Williams, J. F. Morrison, R. G. Duggleby, Methotrexate, a high-affinity pseudosubstrate of dihydrofolate reductase, Biochemistry, 2002, 18, 2567–2573.

    Article  Google Scholar 

  21. S. Chunduru, V. Cody, J. Luft, W. Pangborn, J. Appleman, R. Blakley, Methotrexate-resistant variants of human dihydrofolate reductase. Effects of Phe31 substitutions, J. Biol. Chem., 1994, 269, 9547–9555.

    Article  CAS  PubMed  Google Scholar 

  22. V. Cody, J. R. Luft, W. Pangborn, Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2005, 61(Pt 2), 147–155.

    Article  CAS  Google Scholar 

  23. M. H. N. Tattersall, B. Brown, E. Frei, The reversal of methotrexate toxicity by thymidine with maintenance of antitumour effects, Nature, 1975, 253, 198–200.

    Article  CAS  PubMed  Google Scholar 

  24. M. J. Kosloski, F. Rosen, R. J. Milholland, D. Papahadjopoulos, Effect of Lipid Vesicle (Liposome) Encapsulation of Methotrexate on Its Chemotherapeutic Efficacy in Solid Rodent Tumors, Cancer Res., 1978, 38, 2848–2853.

    CAS  PubMed  Google Scholar 

  25. E. Chatelut, P. Suh, S. Kim, Sustained-release methotrexate for intracavitary chemotherapy, J. Pharm. Sci., 1994, 83, 429–432.

    Article  CAS  PubMed  Google Scholar 

  26. A. Myc, I. J. Majoros, T. P. Thomas, J. R. Baker Jr, Dendrimer-Based Targeted Delivery of an Apoptotic Sensor in Cancer Cells, Biomacromolecules, 2007, 8, 13–18.

    Article  CAS  PubMed  Google Scholar 

  27. J. F. Kukowska-Latallo, K. A. Candido, Z. Cao, S. S. Nigavekar, I. J. Majoros, T. P. Thomas, L. P. Balogh, M. K. Khan, J. R. Baker Jr, Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer, Cancer Res., 2005, 65, 5317–5324.

    Article  CAS  PubMed  Google Scholar 

  28. L. M. Kaminskas, B. D. Kelly, V. M. McLeod, B. J. Boyd, G. Y. Krippner, E. D. Williams, C. J. H. Porter, Pharmacokinetics and Tumor Disposition of PEGylated, Methotrexate Conjugated Poly-l-lysine Dendrimers, Mol. Pharmaceutics, 2009, 6, 1190–1204.

    Article  CAS  Google Scholar 

  29. G. Wu, R. F. Barth, W. Yang, S. Kawabata, L. Zhang, K. Green-Church, Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates, Mol. Cancer Ther., 2006, 5, 52–59.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Chau, N. M. Dang, F. E. Tan, R. Langer, Investigation of targeting mechanism of new dextran-peptide-methotrexate conjugates using biodistribution study in matrix-metalloproteinase-overexpressing tumor xenograft model, J. Pharm. Sci., 2006, 95, 542–551.

    Article  CAS  PubMed  Google Scholar 

  31. K. B. Bai, O. Lng, E. Orbn, R. Szab, L. Köhidai, F. Hudecz, G. Mez, Design, Synthesis, and In Vitro Activity of Novel Drug Delivery Systems Containing Tuftsin Derivatives and Methotrexate, Bioconjugate Chem., 2008, 19, 2260–2269.

    Article  CAS  Google Scholar 

  32. J. Han, S.-J. Lim, M.-K. Lee, C.-K. Kim, Altered Pharmacokinetics and Liver Targetability of Methotrexate by Conjugation with Lactosylated Albumins, Drug Delivery, 2001, 8, 125–134.

    Article  CAS  PubMed  Google Scholar 

  33. N. Kohler, C. Sun, J. Wang, M. Zhang, Methotrexate-Modified Superparamagnetic Nanoparticles and Their Intracellular Uptake into Human Cancer Cells, Langmuir, 2005, 21, 8858–8864.

    Article  CAS  PubMed  Google Scholar 

  34. B. A. Kamen, A. Capdevila, Receptor-mediated folate accumulation is regulated by the cellular folate content, Proc. Natl. Acad. Sci. U. S. A., 1986, 83, 5983–5987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. A. Tomalia, A. M. Naylor, I. William, A. Goddard, Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter, Angew. Chem., Int. Ed. Engl., 1990, 29, 138–175.

    Article  Google Scholar 

  36. R. J. Lee, S. Wang, P. S. Low, Measurement of endosome pH following folate receptor-mediated endocytosis, Biochim. Biophys. Acta, Mol. Cell Res., 1996, 237–242.

    Google Scholar 

  37. J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, P. S. Low, Characterization of the pH of Folate Receptor-Containing Endosomes and the Rate of Hydrolysis of Internalized Acid-Labile Folate-Drug Conjugates, J. Pharmacol. Exp. Ther., 2007, 321, 462–468.

    Article  CAS  PubMed  Google Scholar 

  38. T. P. Thomas and J. R. Kukowska-Latallo, Biological application of PAMAM dendrimer nanodevices in vitro and in vivo, in Dendrimer-Based Nanomedicine, ed. I. Majoros, J. R. Baker Jr, Pan Stanford, Hackensack, NJ, 2008; pp 175–207.

    Chapter  Google Scholar 

  39. M.-H. Li, S. K. Choi, T. P. Thomas, A. Desai, K.-H. Lee, A. Kotlyar, M. M. Banaszak Holl, J. R. Baker Jr, Dendrimer-based Multivalent Methotrexates as Dual Acting Nanoconjugates for Cancer Cell Targeting, Eur. J. Med. Chem., 2012, 47 10.1016/j.ejmech.2011.1011.1027.

  40. J. M. Whiteley, G. B. Henderson, A. Russell, P. Singh, E. M. Zevely, The isolation of dihydrofolate reductases by affinity chromatography on folate-Sepharose, Anal. Biochem., 1977, 79, 42–51.

    Article  CAS  PubMed  Google Scholar 

  41. M. Mammen, S. K. Choi, G. M. Whitesides, Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors, Angew. Chem., Int. Ed., 1998, 37, 2754–2794.

    Article  Google Scholar 

  42. S. Hong, P. R. Leroueil, I. J. Majoros, B. G. Orr, J. R. Baker Jr, M. M. Banaszak Holl, The Binding Avidity of a Nanoparticle-Based Multivalent Targeted Drug Delivery Platform, Chem. Biol., 2007, 14, 107–115.

    Article  CAS  PubMed  Google Scholar 

  43. E. A. Lemke, D. Summerer, B. H. Geierstanger, S. M. Brittain, P. G. Schultz, Control of protein phosphorylation with a genetically encoded photocaged amino acid, Nat. Chem. Biol., 2007, 3, 769–772.

    Article  CAS  PubMed  Google Scholar 

  44. M. Goard, G. Aakalu, O. D. Fedoryak, C. Quinonez, J. St. Julien, S. J. Poteet, E. M. Schuman, T. M. Dore, Light-Mediated Inhibition of Protein Synthesis, Chem. Biol., 2005, 12, 685–693.

    Article  CAS  PubMed  Google Scholar 

  45. T. Furuta, S. S. H. Wang, J. L. Dantzker, T. M. Dore, W. J. Bybee, E. M. Callaway, W. Denk, R. Y. Tsien, Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 1193–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. N. K. Mal, M. Fujiwara, Y. Tanaka, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature, 2003, 421, 350–353.

    Article  CAS  PubMed  Google Scholar 

  47. S. S. Agasti, A. Chompoosor, C.-C. You, P. Ghosh, C. K. Kim, V. M. Rotello, Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles, J. Am. Chem. Soc., 2009, 131, 5728–5729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D. C. Chatterji, J. F. Gallelli, Thermal and photolytic decomposition of methotrexate in aqueous solutions, J. Pharm. Sci., 1978, 67, 526–531.

    Article  CAS  PubMed  Google Scholar 

  49. C. Chahidi, M. Giraud, M. Aubailly, A. Valla, R. Santus, 2,4-Diamino-6-pteridinecarboxaldehyde and an azobenzene derivative are produced by UV photodegradation of methotrexate, Photochem. Photobiol., 1986, 44, 231–233.

    Article  CAS  PubMed  Google Scholar 

  50. IC50 is defined as the concentration of 2 (per an MTX basis) that inhibited the cell growth at the level halfway between control (100%) and maximal inhibition (~20%).

  51. R. Shukla, T. P. Thomas, A. M. Desai, A. Kotlyar, S. J. Park, J. R. Baker Jr, HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb, Nanotechnology, 2008, 19, 295102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. S. K. Choi, P. Leroueil, M.-H. Li, A. Desai, H. Zong, A. F. L. Van Der Spek, J. R. Baker Jr, Specificity and Negative Cooperativity in Dendrimer–Oxime Drug Complexation, Macromolecules, 2011, 44, 4026–4029.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seok Ki Choi or James R. Baker Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.K., Thomas, T.P., Li, MH. et al. Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate. Photochem Photobiol Sci 11, 653–660 (2012). https://doi.org/10.1039/c2pp05355a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05355a

Navigation