Skip to main content
Log in

Differential interactions of a biological photosensitizer with liposome membranes having varying surface charges

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The present work demonstrates the interaction of promising cancer cell photosensitizer, harmane (HM), with liposome membranes of varying surface charges, dimyristoyl-l-a-phosphatidylcholine (DMPC) and dimyristoyl-l-a-phosphatidylglycerol (DMPG). Electrostatic interaction of the cationic probe (HM) with the surface charges of the lipids is responsible for differential modulation of the spectral properties of the drug in different lipid environments. Estimation of partition coefficient (Kp (±10%) = 5.58 × 104 in DMPC and 3.28 × 105 in DMPG) of HM between aqueous buffer and lipid phases reflect strong binding interaction of the drug with both the lipids. Evidence for greater degree of partitioning of HM into DMPG membrane compared to DMPC membrane has been deduced and further substantiated from experimental studies such as steady-state fluorescence anisotropy, micropolarity determination. The molecular modeling investigation by docking simulation coupled with fluorescence quenching experiment has been exploited to substantiate the location of drug at the lipid head-group region. Modulation of the dynamical properties of the drug within the lipid environments has also been addressed. Rotational relaxation dynamics studies unravel the impartation of a significant degree of motional restriction on the probe molecule within the lipids and reinforce the differential interactions of HM with the two lipid systems along the lines of other findings. Fluorescence kinetics studies reveal a faster association (in terms of apparent rate constants describing the process of interaction) of the drug with DMPG membrane compared to DMPC. This result is argued in connection with the electrostatic interaction between the drug and the liposome surface charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Voskuhl, B. J. Ravoo, Molecular recognition of bilayer vesicles, Chem. Soc. Rev., 2009, 38, 495–505.

    Article  CAS  PubMed  Google Scholar 

  2. N. Ashgarian, Z. A. Schelly, Electric field-induced transient birefringence and light scattering of synthetic liposomes, Biochim. Biophys. Acta, Biomembr., 1999, 1418, 295–306.

    Article  Google Scholar 

  3. B. K. Paul, N. Guchhait, Modulated photophysics of an ESIPT probe 1-hydroxy-2-naphthaldehyde within motionally restricted environments of liposome membranes having varying surface charges, J. Phys. Chem. B, 2010, 114, 12528–12540.

    Article  CAS  PubMed  Google Scholar 

  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 1999, Plenum, New York.

    Book  Google Scholar 

  5. J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry, 5th edn, W. H. Freeman and Company, New York, T. M. Devlin (Ed.) 2002.

  6. M. Mohapatra, U. Subuddhi, A. K. Mishra, Photophysical behavior of ground state anion and phototautomer of 3-hydroxyflavone in liposome membrane, Photochem. Photobiol. Sci., 2008, 8, 1373–1378.

    Google Scholar 

  7. J. F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers, Biochim. Biophys. Acta, 2000, 1469, 159–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Ghatak, V. G. Rao, R. Pramanik, S. Sarkar, N. Sarkar, The effect of membrane fluidity on FRET parameters: an energy transfer study inside small unilamellar vesicle, Phys. Chem. Chem. Phys., 2011, 13, 3711–3720.

    Article  CAS  PubMed  Google Scholar 

  9. L. A. Sklar, B. S. Hudson, R. D. Simoni, Conjugated polyene fatty acids as membrane probes: preliminary characterization, Proc. Natl. Acad. Sci. U. S. A., 1975, 72, 1649–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. F. Fox, in Membrane Molecular Biology, ed. C. F. Fox, A. D. Keith, Sinauer Assoc., Stamford, 1972, p.345–385.

  11. K. W. Ferrara, M. A. Borden, H. Zhang, Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery, Acc. Chem. Res., 2009, 42, 881–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Bloom, J. Barchas, M. Sandler and E. Usdin, Progress in Clinical and Biological Research, Beta-carbolines and Tetrahydroisoquinolines, Alan R. Liss Inc, New York, 1982, Vol 90.

    Google Scholar 

  13. C. Braestrup, M. Nielsen, C. E. Olsen, Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors, Proc. Natl. Acad. Sci. U. S. A., 1980, 77, 2288–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. A. Carlini, Plants and the central nervous systems, Pharmacol., Biochem. Behav., 2003, 75, 112–116.

    Article  CAS  Google Scholar 

  15. D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  16. B. Henderson and T. Dougherty, ed. Photodynamic Therapy: Basic Principles and Clinical Applications, Marcel Dekker Inc., New York, 1992.

    Google Scholar 

  17. D. Reyman, A. Pardo, J. M. L. Poyato, Phototautomerism of ß-carboline, J. Phys. Chem., 1994, 98, 10408–10411.

    Article  CAS  Google Scholar 

  18. M. Beljanski, M. S. Beljanski, Selective inhibition of in vitro synthesis of cancer DNA by alkaloids of beta-carboline class, Exp. Cell Biol., 1982, 50, 79–87.

    CAS  PubMed  Google Scholar 

  19. B. K. Paul, N. Guchhait, Modulation of prototropic activity and rotational relaxation dynamics of a cationic biological photosensitizer within motionally constrained bio-environment of a protein, J. Phys. Chem. B, 2011, 115, 10322–10334.

    Article  CAS  PubMed  Google Scholar 

  20. C.-H. Huang, Phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry, 1969, 8, 344–351.

    Article  CAS  PubMed  Google Scholar 

  21. D. Voet and J. Voet, Biochemistry, John Wiley and Sons, Inc., New York, 2nd edn, 1995.

    Google Scholar 

  22. M. J. Frisch et al., Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA, 2003.

    Google Scholar 

  23. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 1998, 19, 1639–1662, and references therein.

    Article  CAS  Google Scholar 

  24. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem., 2009, 30, 2785–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. K. Maiti, S. De, S. Dasgupta, T. Pathak, 3/-N-Alkylamino-3/-deoxy-ara-uridines: A new class of potential inhibitors of ribonuclease A and angiogenin, Bioorg. Med. Chem., 2006, 14, 1221–1228.

    Article  CAS  PubMed  Google Scholar 

  26. C. Mulakala, W. Nerinckx, P. J. Reilly, The fate of ß-D-mannopyranose after its formation by endoplasmic reticulum a-(1à2)-mannosidase I catalysis, Carbohydr. Res., 2007, 342, 163–169.

    Article  CAS  PubMed  Google Scholar 

  27. Y. D. Paila, S. Tiwari, D. Sengupta, A. Chattopadhyay, Molecular modeling of the human serotonin1A receptor: role membrane cholesterol in ligand binding of the receptor, Mol. BioSyst., 2011, 7, 224–234.

    Article  CAS  PubMed  Google Scholar 

  28. I. Alves, G. Staneva, C. Tessier, G. F. Salgado, P. Nuss, The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods, Biochim. Biophys. Acta, Biomembr., 2011, 1808, 2009–2018.

    Article  CAS  Google Scholar 

  29. D.-L. Ma, D. S.-H. Chan, C.-H. Leung, Molecular docking for virtual screening of natural product databases, Chem. Sci., 2011, 2, 1656–1665.

    Article  CAS  Google Scholar 

  30. K. Kanagarajadurai, M. Malini, A. Bhattacharya, M. M. Panicker, R. Sowdhamini, Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding, Mol. BioSyst., 2009, 5, 1877–1888.

    Article  CAS  PubMed  Google Scholar 

  31. S. Niewiadomski, Z. Beebeejaun, H. Denton, T. K. Smith, R. J. Morris, G. K. Wagner, Rationally designed squaryldiamides–a novel class of sugar-nucleotide mimics?, Org. Biomol. Chem., 2010, 8, 3488–3499.

    Article  CAS  PubMed  Google Scholar 

  32. C. Hetenyi, D. von der Spoel, Blind docking of drug-sized compounds to proteins with up to a thousand residues, FEBS Lett., 2006, 580, 1447–1450, and references therein.

    Article  CAS  PubMed  Google Scholar 

  33. W. L. de Lano, The PyMOL Molecular Graphics System (2002), De Lano Scientific, San Carlos, CA, USA.

    Google Scholar 

  34. A. S. Coronilla, C. Carmona, M. A. Munoz, M. Balon, Ground and Singlet Excited State Pyridinic Protonation of N9-Methylbetacarboline in Water-N,N-Dimethylformamide Mixtures, J. Fluoresc., 2009, 19, 1025–1035.

    Article  CAS  Google Scholar 

  35. M. C. Biondic, R. Erra-Balsells, Photochemical behaviour of ß-carbolines. Part4.1 Acid–base equilibria in the ground andexcited states in organic media, J. Chem. Soc., Perkin Trans. 2, 1997, 1323–1328.

    Google Scholar 

  36. G. G. Doig, J. D. Loudon, P. J. Mac Closkey, The chemistry of Mitragyna Genus. Part IV: Derivatives of Harmane, J. Chem. Soc., 1952, 3912–3916.

    Google Scholar 

  37. M. M. Gonzalez, J. Arnbjerg, M. P. Denofrio, R. Erra-Balsells, P. R. Ogilby, F. M. Cabrarizo, One- and two-photon excitation of ß-carbolines in aqueous solution: pH-dependent spectroscopy, photochemistry, and photophysics, J. Phys. Chem. A, 2009, 113, 6648–6656.

    Article  CAS  PubMed  Google Scholar 

  38. M. T. Flanagan, T. R. Hesketh, Electrostatic interactions in the binding of fluorescent probes to lipid membranes, Biochim. Biophys. Acta, Biomembr., 1973, 298, 535–545.

    Article  CAS  Google Scholar 

  39. B. K. Paul, A. Samanta, N. Guchhait, Modulation of excited-state intramolecular proton transfer reaction of 1-hydroxy-2-naphthaldehyde in different supramolecular assemblies, Langmuir, 2010, 26, 3214–3224.

    Article  CAS  PubMed  Google Scholar 

  40. B. K. Paul, A. Samanta, N. Guchhait, Exploring hydrophobic subdomain IIA of the protein bovine serum albumin in the native, intermediate, unfolded, and refolded states by a small fluorescence molecular reporter, J. Phys. Chem. B, 2010, 114, 6183–6196.

    Article  CAS  PubMed  Google Scholar 

  41. P. Pal, H. Zeng, G. Durocher, D. Girard, R. Giasson, L. Blanchard, L. Gaboury, L. Villeneuve, Spectroscopic and photophysical properties of some new rhodamine derivatives in cationic, anionic and neutral micelles, J. Photochem. Photobiol., A, 1996, 98, 65–72.

    Article  CAS  Google Scholar 

  42. S. K. Ghosh, A. Pal, S. Kundu, M. Mandal, S. Nath, T. S. Pal, Emission behavior of 1-methylaminopyrene in aqueous solution of anionic surfactants, Langmuir, 2004, 20, 5209–5213.

    Article  CAS  PubMed  Google Scholar 

  43. C. Rodrigues, P. Gamerio, S. Reis, J. L. F. C. Lima, B. D. Castro, Interaction of grepafloxacin with large unilamellar liposomes: partition and fluorescence studies reveal the importance of charge interactions, Langmuir, 2002, 18, 10231–10236.

    Article  CAS  Google Scholar 

  44. C. R. Mateo, A. Douhal, A coupled proton-transfer and twisting-motion fluorescence probe for lipid bilayers, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 7245–7250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

  46. A. Sytnik, M. Kasha, Excited-state intramolecular proton transfer as a fluorescence probe for protein binding-site static polarity, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 8627–8630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. B. Cohen, D. Huppert, K. M. Solnstev, Y. Tsfadia, E. Nachliel, M. Gutman, Excited state proton transfer in reverse micelles, J. Am. Chem. Soc., 2002, 124, 7539–7547.

    Article  CAS  PubMed  Google Scholar 

  48. B. K. Paul, N. Guchhait, Constrained photophysics of an ESIPT probe within ß-cyclodextrin nanocavity and chaotrope-induced perturbation of the binding phenomenon: Implication towards hydrophobic interaction mechanism between urea and the molecular probe, J. Colloid Interface Sci., 2011, 353, 237–247, and references therein.

    Article  CAS  PubMed  Google Scholar 

  49. K.-S. Focsaneanu, J. C. Scaiano, Potential analytical applications of differential fluorescence quenching: pyrene monomer and excimer emissions as sensors for electron deficient molecules, Photochem. Photobiol. Sci., 2005, 4, 817–821.

    Article  CAS  PubMed  Google Scholar 

  50. H. Z. Liu, J. G. Wu, H. Guo, X. S. Zhou, G. X. Xu, The preliminary study of hydration of phosphocholine by FT-IR, Microchim. Acta, 1988, 94, 361–364.

    Article  Google Scholar 

  51. A. Chakraborty, D. Seth, P. Setua, N. Sarkar, Photoinduced electron transfer reaction in polymer-surfactant aggregates: photoinduced electron transfer between N, N-dimethylaniline and 7-amino coumarin dyes, J. Chem. Phys., 2008, 128, 204510–204519.

    Article  PubMed  CAS  Google Scholar 

  52. C. W. Ko, Z. Wei, R. J. Marsh, D. A. Armoogum, N. Nicolaou, A. J. Bain, A. Zhou, L. Ying, Probing nanosecond motions of plasminogen activator inhbitor-1 by time-resolved fluorescence anisotropy, Mol. BioSyst., 2009, 5, 1025–1031.

    Article  CAS  PubMed  Google Scholar 

  53. B. K. Paul, N. Guchhait, Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: Implication on dissociation of the drug–DNA complex via detergent–sequestration, J. Phys. Chem. B, 2011, 115, 11938.

    Article  CAS  PubMed  Google Scholar 

  54. J. A. Lacey, D. Phillips, Fluorescence lifetime measurements of disulfonated aluminium phthalocyanine in the presence of microbial cells, Photochem. Photobiol. Sci., 2002, 1, 378–383.

    Article  CAS  PubMed  Google Scholar 

  55. L. Masotti, P. Cavatorta, G. Sartor, E. Casali, A. G. Szabo, Tryptophan interactions of gramicidin A’ channels in lipids: a time-resolved fluorescence study, Biochim. Biophys. Acta, Biomembr., 1986, 862, 265–272.

    Article  CAS  Google Scholar 

  56. B. K. Paul, N. Guchhait, A computational insight into the photophysics of a potent UV absorber Tinuvin P: Critical evaluation of the role of charge transfer interaction and topological properties of the intramolecular hydrogen bonding, Comput. Theor. Chem., 2011, 966, 250–258.

    Article  CAS  Google Scholar 

  57. G.-J. Zhao, K.-L. Han, Site-specific solvation of the photoexcited protochlorophyllide a in methanol: Formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening, Biophys. J., 2008, 94, 38–46.

    Article  CAS  PubMed  Google Scholar 

  58. G.-J. Zhao, K.-L. Han, pH-Controlled twisted intramolecular charge transfer (TICT) excited state via changing the charge transfer direction, Phys. Chem. Chem. Phys., 2010, 12, 8914–8918.

    Article  CAS  PubMed  Google Scholar 

  59. G.-J. Zhao, K.-L. Han, Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching, J. Phys. Chem. A, 2007, 111, 9218–9223.

    Article  CAS  PubMed  Google Scholar 

  60. G.-J. Zhao, K.-L. Han, Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: Theoretical study, J. Phys. Chem. A, 2007, 111, 2469–2474.

    Article  CAS  PubMed  Google Scholar 

  61. G.-J. Zhao, K.-L. Han, Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen-bond strengthening and weakening, ChemPhysChem, 2008, 9, 1842–1846.

    Article  CAS  PubMed  Google Scholar 

  62. G.-J. Zhao, B. H. Northrop, K.-L. Han, P. J. Stang, The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex, J. Phys. Chem. A, 2010, 114, 9007–9013.

    Article  CAS  PubMed  Google Scholar 

  63. G.-J. Zhao, F. Yu, M.-X. Zhang, B. H. Northrop, H. Yang, K.-L. Han, P. J. Stang, Substituent effects on the intramolecular charge transfer and fluorescence of bimetallic platinum complexes, J. Phys. Chem. A, 2011, 115, 6390–6393.

    Article  CAS  PubMed  Google Scholar 

  64. G.-J. Zhao, B. H. Northrop, P. J. Stang, K.-L. Han, Photophysical properties of coordination-driven self-assembled metallosupramolecular rhomboids: Experimental and theoretical investigations, J. Phys. Chem. A, 2010, 114, 3418–3422.

    Article  CAS  PubMed  Google Scholar 

  65. G.-J. Zhao, J.-Y. Liu, L.-C. Zhou, K.-L. Han, Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: A new fluorescence quenching mechanism, J. Phys. Chem. B, 2007, 111, 8940–8945.

    Article  CAS  PubMed  Google Scholar 

  66. J. M. Canaves, J. Aleu, M. Lejarreta, J. M. Gonzalez-Ros, J. A. Ferragut, Effects of pH on the kinetics of the interaction between anthracyclines and lipid bilayers, Eur. Biophys. J., 1997, 26, 427–431, and references therein.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Guchhait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, B.K., Guchhait, N. Differential interactions of a biological photosensitizer with liposome membranes having varying surface charges. Photochem Photobiol Sci 11, 661–673 (2012). https://doi.org/10.1039/c2pp05346b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05346b

Navigation