Skip to main content
Log in

Chelation ability of spironaphthoxazine with metal ions in silica gel

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Spironaphthoxazine (SNO) and three metal ions, Mg2+, Zn2+, and Al3+, were dispersed in silica gels by the sol-gel method. The chelation ability of SNO with the metal ions in silica gels was investigated by measuring the fluorescence spectra and was compared to that of 8-hydroxyquinoline (8-HQ) in ethanol and silica gels. A merocyanine-type isomer photoderived from SNO as well as 8-HQ easily formed complexes of the metal ions in the order of Al3+, Zn2+, and Mg2+ because the coordination ability of the metal ions to such ligands depended on their electron affinity. The changes in the fluorescence spectra of the silica gel samples during light irradiation were also investigated. The relative band intensity due to the intermediate species between the original SNO and the merocyanine species decreased and that of the complex increased with the UV irradiation time. The reverse process was observed during visible irradiation. The UV irradiation effects on the chelation of SNO and its photochromic property also depended on the electron affinity of the metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tamiaki, R. Shibata and T. Mizoguchi, Photochem. Photobiol., 2007, 83, 152–162.

    CAS  PubMed  Google Scholar 

  2. R. J. Cogdell, A. T. Gardiner, A. W. Roszak, C. J. Law, J. Southall and N. W. Isaacs, Photosynth. Res., 2004, 81, 207–214.

    Article  CAS  PubMed  Google Scholar 

  3. G. Steinberg-Yfrach, J. L. Rigaud, E. N. Durantini, A. L. Moore, D. Gust and T. A. Moore, Nature, 1998, 392, 479–482.

    Article  CAS  PubMed  Google Scholar 

  4. M. Nagata, Y. Nakamura, E. Nishimura, K. Nakagawa, Y. Suemori, K. Iida and M. Nango, Trans. MRS J., 2005, 30, 655–658.

    CAS  Google Scholar 

  5. Y. Amao, ChemCatChem, 2011, 3, 458–474.

    Article  CAS  Google Scholar 

  6. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151–154.

    Article  CAS  Google Scholar 

  7. N. Ohtani, N. Kitagawa and T. Matsuda, Jpn. J. Appl. Phys., 2011, 50, 01BC08.

    Article  Google Scholar 

  8. J. Zhou, F. Zhou, Y. Li, F. Zhang and X. Song, J. Photochem. Photobiol., A, 1995, 92, 193–199.

    Article  CAS  Google Scholar 

  9. M. J. Preigh, F. Lin, K. Z. Ismail and S. G. Weber, J. Chem. Soc., Chem. Commun., 1995, 2091–2092.

    Google Scholar 

  10. H. Görner and A. K. Chibisov, J. Chem. Soc., Faraday Trans., 1998, 94, 2557–2564.

    Article  Google Scholar 

  11. S. Kumar, D. Hernandez, B. Hoa, Y. Lee, J. S. Yang and A. McCurdy, Org. Lett., 2008, 10, 3761–3764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. G. Berkovic, V. Krongauz and V. Welss, Chem. Rev., 2000, 100, 1741–1753.

    Article  CAS  PubMed  Google Scholar 

  13. W. Yuan, L. Sun, H. Tang, Y. Wen, G. Jiang, W. Huang, L. Jiang, Y. Song, H. Tian and D. Zhu, Adv. Mater., 2005, 17, 156–160.

    Article  CAS  Google Scholar 

  14. H. Nishikiori, N. Tanaka, K. Takagi and T. Fujii, Res. Chem. Intermed., 2003, 29, 485–493.

    Article  CAS  Google Scholar 

  15. H. Nishikiori, R. Sasai, K. Takagi and T. Fujii, Langmuir, 2006, 22, 3376–3380.

    Article  CAS  PubMed  Google Scholar 

  16. H. Nishikiori, N. Tanaka, K. Takagi and T. Fujii, J. Photochem. Photobiol., A, 2006, 183, 53–58.

    Article  CAS  Google Scholar 

  17. H. Nishikiori, N. Tanaka, K. Takagi and T. Fujii, J. Photochem. Photobiol., A, 2007, 189, 46–54.

    Article  CAS  Google Scholar 

  18. S. H. Kim, S. Wang, C. H. Ahn and M. S. Choi, Fibers Polym., 2007, 8, 447–449.

    Article  CAS  Google Scholar 

  19. Z. Tian, R. A. Stairs, M. Wyer, N. Mosey, J. M. Dust, T. M. Kraft and E. Buncel, J. Phys. Chem. A, 2010, 114, 11900–11909.

    Article  CAS  PubMed  Google Scholar 

  20. H. Nishikiori, T. Takamura, S. Shimamura and T. Fujii, J. Photochem. Photobiol., A, 2011, 222, 236–240.

    Article  CAS  Google Scholar 

  21. J. Biteau, F. Chaput, J.-P. Boilot, J. Phys. Chem., 1996, 100, 9024–9031.

    Article  CAS  Google Scholar 

  22. L. Hou and H. Schmidt, J. Mater. Sci., 1996, 31, 3427–3434.

    Article  CAS  Google Scholar 

  23. X. Sun, M. Fan and E. T. Knobbe, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 1997, 297, 57–64.

    Article  CAS  Google Scholar 

  24. B. Schaudel, C. Guermeur, C. Sanchez, K. Nakatani and J. A. Delaire, J. Mater. Chem., 1997, 7, 61–65.

    Article  CAS  Google Scholar 

  25. F. Ortica and G. Favaro, J. Phys. Chem. B, 2000, 104, 12179–12183.

    Article  CAS  Google Scholar 

  26. A. Lafuma, S. Chodorowski-Kimmes, F. X. Quinn and C. Sanchez, Eur. J. Inorg. Chem., 2003, 331–338.

    Google Scholar 

  27. R. Pardo, M. Zayat and D. Levy, J. Photochem. Photobiol., A, 2008, 198, 232–236.

    Article  CAS  Google Scholar 

  28. C. W. Kim, S. W. Oh, Y. H. Kim, H. G. Cha and Y. S. Kang, J. Phys. Chem. C, 2008, 112, 1140–1145.

    Article  CAS  Google Scholar 

  29. R. Winter, D. W. Hua, X. Song, W. Mantulin and J. Jonas, J. Phys. Chem., 1990, 94, 2706–2713.

    Article  CAS  Google Scholar 

  30. T. Fujii, T. Mabuchi, H. Kitamura, O. Kawauchi, N. Negishi and M. Anpo, Bull. Chem. Soc. Jpn., 1992, 65, 720–727.

    Article  CAS  Google Scholar 

  31. T. Fujii and K. Toriumi, J. Chem. Soc., Faraday Trans., 1993, 89, 3437–3441.

    Article  CAS  Google Scholar 

  32. U. Narang, R. Wang, P. N. Prasad and F. V. Bright, J. Phys. Chem., 1994, 98, 17–22.

    Article  CAS  Google Scholar 

  33. K. Matsui and K. Nozawa, Bull. Chem. Soc. Jpn., 1997, 70, 2331–2335.

    Article  CAS  Google Scholar 

  34. B. Dunn and J. I. Zink, Chem. Mater., 1997, 9, 2280–2291.

    Article  CAS  Google Scholar 

  35. T. Mabuchi, H. Nishikiori, N. Tanaka and T. Fujii, J. Sol-Gel Sci. Technol., 2005, 33, 333–340.

    Article  CAS  Google Scholar 

  36. W. D. Johnston and H. Freiser, J. Am. Chem. Soc., 1952, 74, 5239–5242.

    Article  CAS  Google Scholar 

  37. W. E. Ohnesorge, J. Inorg. Nucl. Chem., 1967, 29, 485–493.

    Article  CAS  Google Scholar 

  38. A. V. Karyakin, T. S. Sorokina, L. I. Anikina, T. G. Akimova and M. G. Ezernitskaya, Dokl. Phys. Chem., Translation Phys. Chem. Sect. Dokl. Akad. Nauk SSSR, 1979, 241, 667–669.

    Google Scholar 

  39. Y. Onoue, K. Hiraki, K. Morishige and Y. Nishizawa, Nippon Kagaku Kaishi, 1978, 1978, 1237–1243(in Japanese).

    Article  Google Scholar 

  40. N. Y. C. Chu, in Photochromism: Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, Amsterdam, 2003, pp. 506–507.

  41. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 85th edn., CRC Press, Boca Raton, 2004, pp. 10–183–10–184.

    Google Scholar 

  42. N. J. Rose and R. S. Drago, J. Am. Chem. Soc., 1959, 81, 6138–6141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromasa Nishikiori.

Additional information

Electronic supplementary information (ESI) available: See DOI 10.1039/c2pp05345d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikiori, H., Teshima, K. & Fujii, T. Chelation ability of spironaphthoxazine with metal ions in silica gel. Photochem Photobiol Sci 11, 1164–1173 (2012). https://doi.org/10.1039/c2pp05345d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05345d

Navigation