Skip to main content
Log in

Photoactivatable fluorophores and techniques for biological imaging applications

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photoactivatable fluorophores (PAFs) are powerful imaging probes for tracking molecular and cellular dynamics with high spatiotemporal resolution in biological systems. Recent developments in biological microscopy have raised new demands for engineering new PAFs with improved properties, such as high two photon excitation efficiency, reversibility, cellular delivery and targeting. Here we review the history and some of the recent developments in this area, emphasizing our efforts in developing a new class of caged coumarins and related imaging methods for studying dynamic cell–cell communication through gap junction channels, and in extending the application of these caged coumarins to new areas including spatiotemporal control of microRNA activity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zweig, Pure Appl. Chem., 1973, 33, 389–410.

    Article  CAS  Google Scholar 

  2. B. R. Ware, L. J. Brvenik, R. R. Cummings, R. H. Furukawa and G. A. Krafft, in Application of fluorescence in the biomedical sciences, ed. D. L. Taylor, F. Lanni, R. Murphy and A. Waggoner, Alan R. Liss, Inc., New York, 1986, pp. 141–157.

  3. G. A. Krafft, R. T. Cummings, J. P. Dizio, R. H. Furukawa, L. J. Brvenik, W. R. Sutton and B. R. Ware, in Nucleocytoplasmic Transport, ed. R. Peters and M. Trendelenburg, Springer-Verlag, Berlin, 1986, pp. 35–52.

  4. G. A. Krafft, W. R. Sutton and R. T. Cummings, J. Am. Chem. Soc., 1988, 110, 301–303.

    Article  CAS  Google Scholar 

  5. T. J. Mitchison, J. Cell Biol., 1989, 109, 637–652.

    Article  CAS  PubMed  Google Scholar 

  6. T. J. Mitchison, K. E. Sawin, J. A. Theriot, K. Gee and A. Mallavarapu, Methods Enzymol., 1998, 291, 63–78.

    Article  CAS  PubMed  Google Scholar 

  7. D. Puliti, D. Warther, C. Orange, A. Specht and M. Goeldner, Bioorg. Med. Chem., 2011, 19, 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  8. S. J. Lord, N. R. Conley, H. L. Lee, R. Samuel, N. Liu, R. J. Twieg and W. E. Moerner, J. Am. Chem. Soc., 2008, 130, 9204–9205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. V. N. Belov, C. A. Wurm, V. P. Boyarskiy, S. Jakobs and S. W. Hell, Angew. Chem., Int. Ed., 2010, 49, 3520–3523.

    Article  CAS  Google Scholar 

  10. V. N. Belov, M. L. Bossi, J. Folling, V. P. Boyarskiy and S. W. Hell, Chem.–Eur. J., 2009, 15, 10762–10776.

    Article  CAS  PubMed  Google Scholar 

  11. H. L. Lee, S. J. Lord, S. Iwanaga, K. Zhan, H. Xie, J. C. Williams, H. Wang, G. R. Bowman, E. D. Goley, L. Shapiro, R. J. Twieg, J. Rao and W. E. Moerner, J. Am. Chem. Soc., 2010, 132, 15099–15101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. V. I. Rodionov, S. S. Lim, V. I. Gelfand and G. G. Borisy, J. Cell Biol., 1994, 126, 1455–1464.

    Article  CAS  PubMed  Google Scholar 

  13. S. Okabe and N. Hirokawa, J. Cell Biol., 1993, 120, 1177–1186.

    Article  CAS  PubMed  Google Scholar 

  14. J. A. Theriot and T. J. Mitchison, Nature, 1991, 352, 126–131.

    Article  CAS  PubMed  Google Scholar 

  15. L. Cramer and T. J. Mitchison, J. Cell Biol., 1993, 122, 833–843.

    Article  CAS  PubMed  Google Scholar 

  16. W. R. Lempert, K. Magee, P. Ronney, K. R. Gee and R. P. Haugland, Exp. Fluids, 1995, 18, 249–257.

    Article  CAS  Google Scholar 

  17. P. H. Paul, M. G. Garguilo and D. J. Rakestraw, Anal. Chem., 1998, 70, 2459–2467.

    Article  CAS  PubMed  Google Scholar 

  18. J. P. Vincent, P. H. O’Farrell, Cell, 1992, 68, 923–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. J. Kozlowski, T. Murakami, R. K. Ho and E. S. Weinberg, Biochem. Cell Biol., 1997, 75, 551–562.

    Article  CAS  PubMed  Google Scholar 

  20. J. C. Politz, R. A. Tuft, T. Pederson and R. H. Singer, Curr. Biol., 1999, 9, 285–291.

    Article  CAS  PubMed  Google Scholar 

  21. J. C. Politz, R. A. Tuft, K. V. Prasanth, N. Baudendistel, K. E. Fogarty, L. M. Lifshitz, J. Langowski, D. L. Spector and T. Pederson, Mol. Biol. Cell, 2006, 17, 1239–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. C. Politz, Trends Cell Biol., 1999, 9, 284–287.

    Article  CAS  PubMed  Google Scholar 

  23. G. H. Patterson and J. Lippincott-Schwartz, Science, 2002, 297, 1873–1877.

    Article  CAS  PubMed  Google Scholar 

  24. K. A. Lukyanov, D. M. Chudakov, S. Lukyanov and V. V. Verkhusha, Nat. Rev. Mol. Cell Biol., 2005, 6, 885–891.

    Article  CAS  PubMed  Google Scholar 

  25. J. Lippincott-Schwartz and G. H. Patterson, Trends Cell Biol., 2009, 19, 555–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Miyawaki, Nat. Rev. Mol. Cell Biol., 2011, 12, 656–668.

    Article  CAS  PubMed  Google Scholar 

  27. T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell and S. Jakobs, Nat. Biotechnol., 2011, 29, 942–947.

    Article  CAS  PubMed  Google Scholar 

  28. T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban, F. Lavoie-Cardinal, K. I. Willig, C. Eggeling, S. Jakobs and S. W. Hell, Nature, 2011, 478, 204–208.

    Article  CAS  PubMed  Google Scholar 

  29. R. Ando, H. Mizuno and A. Miyawaki, Science, 2004, 306, 1370–1373.

    Article  CAS  PubMed  Google Scholar 

  30. L. Caneparo, P. Pantazis, W. Dempsey and S. E. Fraser, PLoS One, 2011, 6, e20230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Hatta, H. Tsujii and T. Omura, Nat. Protoc., 2006, 1, 960–967.

    Article  CAS  PubMed  Google Scholar 

  32. Q. Q. Zhu, W. Schnabel and H. Schupp, J. Photochem., 1987, 39, 317–332.

    Article  CAS  Google Scholar 

  33. H. Schupp, W. K. Wong and W. Schnabel, J. Photochem., 1987, 36, 85–97.

    Article  CAS  Google Scholar 

  34. J. A. McCray and D. R. Trentham, Annu. Rev. Biophys. Biophys. Chem., 1989, 18, 239–270.

    Article  CAS  PubMed  Google Scholar 

  35. J. E. Corrie, A. Barth, V. R. Munasinghe, D. R. Trentham and M. C. Hutter, J. Am. Chem. Soc., 2003, 125, 8546–8554.

    Article  CAS  PubMed  Google Scholar 

  36. M. J. Hinner and K. Johnsson, Curr. Opin. Biotechnol., 2010, 21, 766–776.

    Article  CAS  PubMed  Google Scholar 

  37. E. B. Brown, J. B. Shear, S. R. Adams, R. Y. Tsien and W. W. Webb, Biophys. J., 1999, 76, 489–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. W. R. Zipfel, R. M. Williams and W. W. Webb, Nat. Biotechnol., 2003, 21, 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  39. W. Denk, J. H. Strickler and W. W. Webb, Science, 1990, 248, 73–76.

    Article  CAS  PubMed  Google Scholar 

  40. P. Lipp and E. Niggli, J. Physiol., 1998, 508(Pt 3), 801–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. T. Furuta, S. S. Wang, J. L. Dantzker, T. M. Dore, W. J. Bybee, E. M. Callaway, W. Denk and R. Y. Tsien, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 1193–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Matsuzaki, G. C. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino and H. Kasai, Nat. Neurosci., 2001, 4, 1086–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. W. Echevarria, M. F. Leite, M. T. Guerra, W. R. Zipfel and M. H. Nathanson, Nat. Cell Biol., 2003, 5, 440–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K. Dakin and W. H. Li, Cell Calcium, 2007, 42, 291–301.

    Article  CAS  PubMed  Google Scholar 

  45. G. H. Patterson and D. W. Piston, Biophys. J., 2000, 78, 2159–2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. A. Hopt and E. Neher, Biophys. J., 2001, 80, 2029–2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. G. T. Hermanson, Bioconjugate Techniques, Academic Press++++2008.

    Google Scholar 

  48. Y. Zhao, Q. Zheng, K. Dakin, K. Xu, M. L. Martinez and W. H. Li, J. Am. Chem. Soc., 2004, 126, 4653–4663.

    Article  CAS  PubMed  Google Scholar 

  49. M. A. Rizzo, G. H. Springer, B. Granada and D. W. Piston, Nat. Biotechnol., 2004, 22, 445–449.

    Article  CAS  PubMed  Google Scholar 

  50. K. Dakin and W. H. Li, Nat. Methods, 2006, 3, 959.

    Article  CAS  PubMed  Google Scholar 

  51. Y. Zhu, C. M. Pavlos, J. P. Toscano and T. M. Dore, J. Am. Chem. Soc., 2006, 128, 4267–4276.

    Article  CAS  PubMed  Google Scholar 

  52. K. Dakin, Y. R. Zhao and W. H. Li, Nat. Methods, 2005, 2, 55–62.

    Article  CAS  PubMed  Google Scholar 

  53. M. V. Bennett and R. S. Zukin, Neuron, 2004, 41, 495–511.

    Article  CAS  PubMed  Google Scholar 

  54. A. De Maio, V. L. Vega and J. E. Contreras, J. Cell. Physiol., 2002, 191, 269–282.

    Article  PubMed  CAS  Google Scholar 

  55. A. L. Harris, Q. Rev. Biophys., 2001, 34, 325–472.

    Article  CAS  PubMed  Google Scholar 

  56. V. Cruciani and S. O. Mikalsen, Cell. Mol. Life Sci., 2006, 63, 1125–1140.

    Article  CAS  PubMed  Google Scholar 

  57. Gap junctions molecular basis of cell communication in health and disease, ed. C. Peracchia, Academic Press, San Diego, 2000.

    Google Scholar 

  58. K. Dakin and W. H. Li, Cell Commun. Adhes., 2006, 13, 29–39.

    Article  CAS  PubMed  Google Scholar 

  59. D. Warther, F. Bolze, J. Leonard, S. Gug, A. Specht, D. Puliti, X. H. Sun, P. Kessler, Y. Lutz, J. L. Vonesch, B. Winsor, J. F. Nicoud and M. Goeldner, J. Am. Chem. Soc., 2010, 132, 2585–2590.

    Article  CAS  PubMed  Google Scholar 

  60. G. Zheng, Y. M. Guo and W. H. Li, J. Am. Chem. Soc., 2007, 129, 10616–10617.

    Article  CAS  PubMed  Google Scholar 

  61. C. R. Parish, Immunol. Cell Biol., 1999, 77, 499–508.

    Article  CAS  PubMed  Google Scholar 

  62. D. J. Hnatowich, W. W. Layne, R. L. Childs, D. Lanteigne, M. A. Davis, T. W. Griffin and P. W. Doherty, Science, 1983, 220, 613–615.

    Article  CAS  PubMed  Google Scholar 

  63. X. Ouyang, I. A. Shestopalov, S. Sinha, G. Zheng, C. L. Pitt, W. H. Li, A. J. Olson and J. K. Chen, J. Am. Chem. Soc., 2009, 131, 13255–13269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Y. M. Guo, S. Chen, P. Shetty, G. Zheng, R. Lin and W. H. Li, Nat. Methods, 2008, 5, 835–841.

    Article  CAS  PubMed  Google Scholar 

  65. G. Zheng, L. Cochella, J. Liu, O. Hobert and W. H. Li, ACS Chem. Biol, 2011, 6, 1332–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. R. C. Lee, R. L. Feinbaum and V. Ambros, Cell, 1993, 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  67. V. Ambros, Nature, 2004, 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  68. D. P. Bartel, Cell, 2004, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  69. D. P. Bartel, Cell, 2009, 136, 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. C. C. Esau, Methods, 2008, 44, 55–60.

    Article  CAS  PubMed  Google Scholar 

  71. P. Ordoukhanian and J. S. Taylor, J. Am. Chem. Soc., 1995, 117, 9570–9571.

    Article  CAS  Google Scholar 

  72. X. Tang and I. J. Dmochowski, Angew. Chem., Int. Ed., 2006, 45, 3523–3526.

    Article  CAS  Google Scholar 

  73. X. Tang, S. Maegawa, E. S. Weinberg and I. J. Dmochowski, J. Am. Chem. Soc., 2007, 129, 11000–11001.

    Article  CAS  PubMed  Google Scholar 

  74. I. A. Shestopalov, S. Sinha and J. K. Chen, Nat. Chem. Biol., 2007, 3, 650–651.

    Article  CAS  PubMed  Google Scholar 

  75. G. Zheng, V. Ambros and W. H. Li, Silence, 2010, 1, 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. R. J. Johnston and O. Hobert, Nature, 2003, 426, 845–849.

    Article  CAS  PubMed  Google Scholar 

  77. S. Mao, R. K. Benninger, Y. Yan, C. Petchprayoon, D. Jackson, C. J. Easley, D. W. Piston and G. Marriott, Biophys. J., 2008, 94, 4515–4524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. D. Maurel, S. Banala, T. Laroche and K. Johnsson, ACS Chem. Biol., 2010, 5, 507–516.

    Article  CAS  PubMed  Google Scholar 

  79. G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff and Y. Yan, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 17789–17794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. C. Petchprayoon, Y. Yan, S. Mao and G. Marriott, Bioorg. Med. Chem., 2011, 19, 1030–1040.

    Article  CAS  PubMed  Google Scholar 

  81. G. Han, T. Mokari, C. Ajo-Franklin and B. E. Cohen, J. Am. Chem. Soc., 2008, 130, 15811–15813.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-hong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Wh., Zheng, G. Photoactivatable fluorophores and techniques for biological imaging applications. Photochem Photobiol Sci 11, 460–471 (2012). https://doi.org/10.1039/c2pp05342j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05342j

Navigation