Skip to main content
Log in

[Ru(bpy)3]2+ as a reference in transient absorption spectroscopy: differential absorption coefficients for formation of the long-lived 3MLCT excited state

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Transient absorption spectroscopy and other time-resolved methods are commonly used to study chemical reactions and biological processes induced by absorption of light. In order to scale the signal amplitude or to compare results obtained under different conditions, it is advisable to use a reference system, a standard of convenient and well-defined properties. Finding Tris(bipyridine)ruthenium(ii), [Ru(bpy)3]2+, a suitable candidate for a transient-absorption spectroscopy reference due to its favourable photochemical properties, we have determined accurate relative values of differential molar absorption coefficients (Δ ε) for light-induced formation of the metal-to-ligand charge transfer (MLCT) excited triplet state at several relevant wavelengths (wavelengths of commercially available lasers) in the UV and visible regions. We have also attempted to determine the absolute value of Δ ε close to the wavelength of maximum bleaching (~450 nm) and we propose to narrow down the interval of conceivable values for Δ ε450 from the broad range of published values (-0.88 × 104 M-1cm-1 to -1.36 × 104 M-1cm-1) to -1.1 × 104 M-1cm-1 ± 15%. Having ourselves successfully applied [Ru(bpy)3]2+ as a standard in a recent time-resolved study of enzymatic DNA repair, we would like to encourage other scientists to use this convenient tool as a reference in their future spectroscopic studies on time scales from picoseconds to hundreds of nanoseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. N. V. Tkachenko, Optical Spectroscopy (Methods and Instruments), Elsevier, 2006, ISBN: 978-0-444-52126-2.

    Google Scholar 

  2. H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Chemical actinometry (IUPAC Technical Report), Pure Appl. Chem., 2004, 76, 2105–2146.

    Article  CAS  Google Scholar 

  3. V. Thiagarajan, M. Byrdin, A. P. M. Eker, P. Müller, K. Brettel, Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 9402–9407.

    Article  CAS  Google Scholar 

  4. M. Byrdin, A. Lukacs, V. Thiagarajan, A. P. M. Eker, K. Brettel, M. H. Vos, Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: Toward a detailed understanding of the triple tryptophan electron transfer chain, J. Phys. Chem. A, 2010, 114, 3207–3214.

    Article  CAS  Google Scholar 

  5. M. Byrdin, V. Thiagarajan, S. Villette, A. Espagne, K. Brettel, Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption, Rev. Sci. Instrum., 2009, 80, 043102–1–5.

    Article  Google Scholar 

  6. K. Brettel, E. Schlodder, Ru(bipy)3Cl2 luminescence as optical step signal for detector testing, Rev. Sci. Instrum., 1988, 59, 670–671.

    Article  CAS  Google Scholar 

  7. K. Kalyanasundaram, Photophysics, photochemistry and solar energy conversion with Tris(bipyridyl)ruthenium(II) and its analogues, Coord. Chem. Rev., 1982, 46, 159–244.

    Article  CAS  Google Scholar 

  8. H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, PhotochemCAD: A computer-aided design and research tool in photochemistry, Photochem. Photobiol., 1998, 68, 141–142.

    CAS  Google Scholar 

  9. A. N. Tarnovsky, W. Gawelda, M. Johnson, C. Bressler, M. Chergui, Photoexcitation of aqueous ruthenium(II)-tris-(2,2’-bipyridine) with high-intensity femtosecond laser pulses, J. Phys. Chem. B, 2006, 110, 26497–26505.

    Article  CAS  Google Scholar 

  10. K. Miedlar, P. K. Das, Tris(2,2’-bipyridine)ruthenium(II)-sensitized photooxidation of phenols. Environmental effects on electron transfer yields and kinetics, J. Am. Chem. Soc., 1982, 104, 7462–7469.

    Article  CAS  Google Scholar 

  11. U. Lachish, P. P. Infelta, M. Grätzel, Optical absorption spectrum of excited ruthenium tris-bipyridyl Ru(bpy)32+, Chem. Phys. Lett., 1979, 62, 317–319.

    Article  CAS  Google Scholar 

  12. A. Yoshimura, M. Z. Hoffman, H. Sun, An evaluation of the excited state absorption spectrum of Ru(bpy)32+ in aqueous and acetonitrile solutions, J. Photochem. Photobiol., A, 1993, 70, 29–33.

    Article  CAS  Google Scholar 

  13. M. Goez, D. von Ramin-Marro, M. H. O. Musa, M. Schiewek, Photoionization of [Ru(bpy)3]2+: a catalytic cycle with water as sacrificial donor, J. Phys. Chem. A, 2004, 108, 1090–1100.

    Article  CAS  Google Scholar 

  14. U. Lachish, A. Shafferman, G. Stein, Intensity dependence in laser flash photolysis experiments: hydrated electron formation from ferrocyanine, tryosine and tryptophan, J. Chem. Phys., 1976, 64, 4205–4211.

    Article  CAS  Google Scholar 

  15. S. E. Braslavsky, K. N. Houk, Glossary of terms used in photochemistry (Recommendations 1988), Pure Appl. Chem., 1988, 60, 1055–1106.

    Article  CAS  Google Scholar 

  16. P. M. Hare, E. A. Price, D. M. Bartels, Hydrated electron extinction coefficient revisited, J. Phys. Chem. A, 2008, 112, 6800–6802.

    Article  CAS  Google Scholar 

  17. A. J. McCaffery, S. F. Mason, B. J. Norman, Optical rotatory power of co-ordination compounds. Part XII. Spectroscopic and configurational assignments for the tris-bipyridyl and -phenanthroline complexes of the di- and tri-valent iron-group metal ions, J. Chem. Soc. A, 1969, 1428–1441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Müller or Klaus Brettel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, P., Brettel, K. [Ru(bpy)3]2+ as a reference in transient absorption spectroscopy: differential absorption coefficients for formation of the long-lived 3MLCT excited state. Photochem Photobiol Sci 11, 632–636 (2012). https://doi.org/10.1039/c2pp05333k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05333k

Navigation