Skip to main content
Log in

Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa)

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Kiwi fruit displays chlorophyll fluorescence. A physical model was developed to reproduce the observed original fluorescence for the whole fruit, from the emission of the different parts of the kiwi fruit. The spectral distribution of fluorescence in each part of the fruit, was corrected to eliminate distortions due to light re-absorption and it was analyzed in relation to photosystem II–photosystem I ratio. Kiwi fruit also displays variable chlorophyll-fluorescence, similar to that observed from leaves. The maximum quantum efficiency of photosystem II photochemistry (Fv/ Fm), the quantum efficiency of photosystem II (FPSII), and the photochemical and non-photochemical quenching coefficients (qP and qNP respectively) were determined and discussed in terms of the model developed. The study was extended by determining the photosynthetic parameters as a function of the storage time, at both 4 °C and room temperature for 25 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Maxwell, G. N. Johnson, Chlorophyll fluorescence–a practical guide, J. Exp. Bot., 2000, 51, 659–668.

    Article  CAS  Google Scholar 

  2. H. K. Lichtenthaler, C. Buschmann, M. Knapp, How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer, Photosynthetica, 2005, 43, 379–393.

    Article  CAS  Google Scholar 

  3. N. R. Baker and K. Oxborough, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, ed. G. C. Papageorgiou and Govindjee, Springer, Dordrecht, 1st edn, 2004, vol. 1, ch. 3, pp. 68–74.

  4. M. E. Ramos, M. G. Lagorio, A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples, Photochem. Photobiol. Sci., 2006, 5, 508–512.

    Article  CAS  Google Scholar 

  5. P. Mazzinghi, G. Agati, F. Fusi, Interpretation and physiological significance of blue-green and red vegetation fluorescence, Int. Geosci. Remote Sens. Symp. (IGARSS), 1994, 1, 640–642.

    Google Scholar 

  6. E. Pfündel, Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence, Photosynth. Res., 1998, 56, 185–195.

    Article  Google Scholar 

  7. L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, G. Agati, A retrieval algorithm to evaluate the Photosystem I and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures, Photosynth. Res., 2011, 108, 225–239.

    Article  CAS  Google Scholar 

  8. G. B. Cordon, M. G. Lagorio, Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models, Photochem. Photobiol. Sci., 2006, 5, 735–740.

    Article  CAS  Google Scholar 

  9. M. G. Lagorio, L. E. Dicelio, M. I. Litter, E. San Román, Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on cellulose, J. Chem. Soc., Faraday Trans., 1998, 94, 419–425.

    Article  Google Scholar 

  10. R. K. Prange, J. M. DeLong, J. C. Leyte, P. A. Harrison, Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit, Postharvest Biol. Technol., 2002, 24, 201–205.

    Article  CAS  Google Scholar 

  11. J. R. DeEll, O. Van Kooten, R. K. Prange, D. P. Murr, Applications of chlorophyll fluorescence techniques in postharvest physiology, Hortic. Rev., 1999, 23, 69–107.

    CAS  Google Scholar 

  12. J. Gross, I. Ohad, In vivo fluorescence spectroscopy of chlorophyll in various unripe and ripe fruit, Photochem. Photobiol., 1983, 37, 195–200.

    Article  CAS  Google Scholar 

  13. N. K. Given, in Biochemistry of Fruit Ripening, ed. G. B. Seymour, J. E. Taylor and G. A. Tucker, Chapman and Hall, London, 1st edn, 1993, pp. 235–254.

  14. J. V. Possingham, M. Coote, J. S. Hawker, The plastids and pigments of fresh and dried Chinese Gooseberries (Actinidia chinensis), Ann. Bot., 1980, 45, 529–533.

    Article  CAS  Google Scholar 

  15. M. Montefiori, T. K. McGhie, I. C. Hallett, G. Costa, Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit, Sci. Hortic., 2009, 119, 377–387.

    Article  CAS  Google Scholar 

  16. J. R. DeEll and P. M. A. Toivonen, in Practical Applications of Chlorophyll Fluorescence in Plant Biology, ed. J. R. DeEll and P. M. A. Toivonen, Kluwer Academic Publishers, Massachusetts, 2003, vol. 1, ch. 7, pp. 203–243.

  17. M. Lechaudel, L. Urban, J. Joas, Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. ‘Cogshall’) without growth conditions bias, J. Agric. Food Chem., 2010, 58, 7532–7538.

    Article  CAS  Google Scholar 

  18. Z. G. Cerovic, N. Moise, G. Agati, G. Latouche, N. Ben Ghozlen, S. Meyer, New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence, J. Food Compos. Anal., 2008, 21, 650–654.

    Article  CAS  Google Scholar 

  19. W. Wendlandt and H. G. Hecht, in Reflectance Spectroscopy, ed. P. J. Elving and I. M. Kolthoff, Interscience Publishers, New York, 1966, pp. 62.

  20. M. E. Ramos, M. G. Lagorio, True fluorescence spectra of leaves, Photochem. Photobiol. Sci., 2004, 3, 1063–1066.

    Article  CAS  Google Scholar 

  21. G. B. Cordon, M. G. Lagorio, Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients, Photochem. Photobiol. Sci., 2007, 6, 873–882.

    Article  CAS  Google Scholar 

  22. H. B. Rodriguez, M. G. Lagorio, E. San Román, Rose Bengal adsorbed on microgranular cellulose. Evidence of fluorescent dimers, Photochem. Photobiol. Sci., 2004, 3, 674–680.

    Article  CAS  Google Scholar 

  23. A. Zeug, J. Zimmermann, M. G. Lagorio, E. San Román, Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water, Photochem. Photobiol. Sci., 2002, 1, 198–203.

    Article  CAS  Google Scholar 

  24. A. Iriel, M. G. Lagorio, L. E. Dicelio, E. San Román, Photophysics of supported dyes: phthalocyanine on silanized silica, Phys. Chem. Chem. Phys., 2002, 4, 224–231.

    Article  CAS  Google Scholar 

  25. M. G. Lagorio, E. San Román, A. Zeug, J. Zimmermann, B. Roeder, Photophysics on surfaces: Absorption and luminescence properties of pheophorbide-a on cellulose, Phys. Chem. Chem. Phys., 2001, 3, 1524–1529.

    Article  Google Scholar 

  26. B. Genty, J.-M. Briantais, N. R. Baker, The relationship between the quantum yield of the photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, Gen. Subj., 1989, 990, 87–92.

    Article  CAS  Google Scholar 

  27. O. Van Kooten, J. F. H. Snel, The use of chlorophyll fluorescence nomenclature in plant stress physiology, Photosynth. Res., 1990, 25, 147–150.

    Article  Google Scholar 

  28. J. H. Kim, R. E. Glick, A. Melis, Dynamics of photosystem stoichiometry adjustment by light quality in chloroplasts, Plant Physiol., 1993, 102, 181–190.

    Article  CAS  Google Scholar 

  29. R. G. Walters, Towards an understanding of photosynthetic acclimation, J. Exp. Bot., 2004, 56, 435–447.

    Article  Google Scholar 

  30. D. Fan, A. B. Hope, P. J. Smith, H. J. R. J. Pace, J. M. Anderson, W. S. Chow, The stoichiometry of the two photosystems in higher plants revisited, Biochim. Biophys. Acta, Bioenerg., 2007, 1767, 1064–1072.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gabriela Lagorio.

Additional information

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp05299g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novo, J.M., Iriel, A. & Lagorio, M.G. Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa). Photochem Photobiol Sci 11, 724–730 (2012). https://doi.org/10.1039/c2pp05299g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05299g

Navigation