Skip to main content

Advertisement

Log in

A computational model for previtamin D3 production in skin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Low levels of vitamin D have been implicated in a wide variety of health issues from calcemic diseases to cancer, diabetes and cardiovascular disease. For most humans, the majority of vitamin D3 is derived from sunlight. How much vitamin D is produced under given exposure conditions is still widely discussed. We present a computational model for the production of (pre-)vitamin D within the skin. It accounts for spectral irradiance, optical properties of the skin and concentration profile of provitamin D. Results are computed for various sets of these parameters yielding the distribution of produced previtamin D in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IARC–International agency for research on cancer, vitamin D and cancer. IARC Working Group Reports, 2008, 5.

  2. K. K. Deeb, D. L. Trump, C. S. Johnson, Vitamin D signalling pathways in cancer: potential for anticancer therapeutics, Nat. Rev. Cancer, 2007, 7, 684–700.

    Article  CAS  Google Scholar 

  3. R. Scragg, Vitamin D, Sun Exposure and Cancer, Cancer Society of New Zealand, 2007.

    Google Scholar 

  4. J. Reichrath, The challenge resulting from positive and negative effects of sunlight: how much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer?, Prog. Biophys. Mol. Biol., 2006, 92, 9–16.

    Article  CAS  Google Scholar 

  5. R. L. McKenzie, J. B. Liley, L. O. Björn, UV radiation: balancing risks and benefits, Photochem. Photobiol., 2009, 85, 88–98.

    Article  CAS  Google Scholar 

  6. A. R. Webb, O. Engelsen, Calculated ultraviolet exposure levels for a healthy vitamin D status, Photochem. Photobiol., 2006, 82, 1697–1703.

    Article  CAS  Google Scholar 

  7. M. Norval, L. O. Blörn, F. de Gruijl, Is the action spectrum for the UV-induced production of previtamin D3 in human skin correct?, Photochem. Photobiol. Sci., 2010, 9, 11–17.

    Article  CAS  Google Scholar 

  8. M. Meinhardt, R. Krebs, A. Anders, U. Heinrich, H. Tronnier, Wavelength dependent penetration depths of ultraviolet radiation in human skin, J. Biomed. Opt., 2008, 13(4), 044030.

    Article  Google Scholar 

  9. J. K. Yamamoto, R. F. Borch, Photoconversion of 7-dehydrocholesterol to vitamin D3 in synthetic phospholipid bilayers, Biochemistry, 1985, 24, 3338–3344.

    Article  CAS  Google Scholar 

  10. A. R. Webb, Who, what, where and when–influences on cutaneous vitamin D synthesis, Prog. Biophys. Mol. Biol., 2006, 92(1), 17–25.

    Article  CAS  Google Scholar 

  11. ISO 9845–1, 1992..

  12. M. Meinhardt, R. Krebs, A. Anders, U. Heinrich, H. Tronnier, Absorption spectra of human skin in vivo in the ultraviolet wavelength range measured by optoacoustics, Photochem. Photobiol., 2009, 85, 70–77.

    Article  CAS  Google Scholar 

  13. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, Skin optics, IEEE Trans. Biomed. Eng., 1989, 36(12), 1146–1154.

    Article  Google Scholar 

  14. J. MacLaughlin, M. F. Holick, Aging decreases the capacity of human skin to produce vitamin D3, J. Clin. Invest., 1985, 76, 1536–1538.

    Article  CAS  Google Scholar 

  15. M. F. Holick, J. A. MacLaughlin, M. B. Clark, S. A. Holick, J. T. J. Potts, R. R. Anderson, I. H. Blank, J. A. Parrish, P. Elias, Photosynthesis of previtamin D3 in human skin and the physiologic consequences, Science, 1980, 210(4466), 203–205.

    Article  CAS  Google Scholar 

  16. M. F. Holick, Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans, in Vertebrate Endocrinology: Fundamentals and Biomedical Applications, Academic Press, 1989, vol. 3, pp. 7–43.

    Google Scholar 

  17. W. J. Olds, Elucidating the links between UV radiation and vitamin D synthesis: using an in vitro model, PhD thesis, Queensland University of Technology. Data on vitamin D production is taken from table 8.6 on page 215, data on 7-DHC depletion from table 8.13 on page 227. Manuscript accessible viahttp://eprints.qut.edu.au/32073/.

  18. W. J. Olds, A. R. McKinley, M. R. Moore, M. G. Kimlin, In vitro model of vitamin D3 (Cholecalciferol) synthesis by UV radiation: dose–response relationships, J. Photochem. Photobiol., B, 2008, 93, 88–93.

    Article  CAS  Google Scholar 

  19. CIE, Action spectrum for the production of previtamin D3 in human skin. Technical Report, International Commission on Illumination, 2006, 174..

  20. X. Q. Tian, T. C. Chen, Z. Lu, Q. Shao, M. F. Holick, Characterization of the translocation process of vitamin D3 from the skin into the circulation, Endocrinology, 1994, 135(2), 655–661.

    Article  CAS  Google Scholar 

  21. F. Loomis, Skin-pigment regulation of vitamin biosynthesis in man, Science, 1967, 157, 501–506.

    Article  CAS  Google Scholar 

  22. M. S. Blois, H. F. Blum, W. F. Loomis, Vitamin D, sunlight, and natural selection, Science, 1968, 159(3815), 652–653.

    Article  CAS  Google Scholar 

  23. M. F. Holick, J. A. MacLaughlin, S. H. Doppelt, Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator, Science, 1981, 211, 590–593.

    Article  CAS  Google Scholar 

  24. T. L. Clemens, J. S. Adams, S. L. Henderson, M. F. Holick, Increased skin pigment reduces the capacity of skin to synthesise vitamin D3, Lancet, 1982, 1(8263), 74–76.

    Article  CAS  Google Scholar 

  25. C. W. Lo, P. W. Paris, M. F. Holick, Indian and Pakistani immigrants have the same capacity as Caucasians to produce vitamin D in response to ultraviolet radiation, Am. J. Clin. Nutr., 1986, 44, 683–685.

    Article  CAS  Google Scholar 

  26. A. R. Webb, O. Engelsen, Calculated ultraviolet exposure levels for a healthy vitamin D status, Photochem. Photobiol., 2006, 82, 1697–1703.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Meinhardt-Wollweber.

Additional information

† Vitamin D denotes vitamin D3 unless otherwise indicated

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinhardt-Wollweber, M., Krebs, R. A computational model for previtamin D3 production in skin. Photochem Photobiol Sci 11, 731–737 (2012). https://doi.org/10.1039/c2pp05295d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05295d

Navigation