Skip to main content
Log in

Effects of visible and UV light on the characteristics and properties of crude oil-in-water (O/W) emulsions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effects of visible and UV light on the characteristics and properties of Prudhoe Bay (PB) and South Louisiana (SL) emulsions were investigated to better understand the role of sunlight on the fate of spilled crude oils that form emulsions with a dispersant in the aquatic environment. Before irradiation, crude oil emulsions showed the presence of dispersed crude oil micelles in a continuous water phase and crude oil components floating on the surface. The crude oil micelles decreased in size with irradiation, but emulsions retained their high degree of polydispersity. UV irradiation reduced the stability of emulsions more effectively than visible light. The reduction of micelles size caused the viscosity of emulsions to increase and melting point to decrease. Further, irradiation increased acid concentrations and induced ion formation which lowered the pH and increased the conductivity of emulsions, respectively. Ni and Fe in PB emulsions were extracted from crude oil with UV irradiation, which may provide an efficient process for metal removal. The emulsions were stable toward freeze/thaw cycles and their melting temperatures generally decreased with irradiation. Evidence of ?OH production existed when emulsions were exposed to UV but not to visible light. The presence of H2O2 enhanced the photodegradation of crude oil. Overall, the changes in emulsion properties were attributed to direct photodegradation and photooxidation of crude oil components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. O. Platteau, M. Carrillo, Determination of metallic elements in crude oil–water emulsions by flame AAS, Fuel, 1995, 74, 761–767.

    Article  CAS  Google Scholar 

  2. J. G. Speight, The Chemistry and Technology of Petroleum, 4th ed., CRC Press, Boca Raton, FL, 2007, pp. 179–193.

    Google Scholar 

  3. D. Langevin, S. Poteau, I. Hénaut, J. F. Argillier, Crude oil emulsion properties and their application to heavy oil transportation, Oil Gas Sci. Technol., 2004, 59, 511–521.

    Article  CAS  Google Scholar 

  4. P. S. Daling, T. Storm, Weathering of oils at sea: model/field area comparisons, Spill Sci. Technol. Bull., 1999, 5, 63–74.

    Article  Google Scholar 

  5. R. Bongiovanni, E. Borgarello, E. Pelizzetti, Oil spills in the aquatic environment: the chemistry and photochemistry at the water/oil interface, La Chim. e L’Ind., 1989, 71, 12–17.

    CAS  Google Scholar 

  6. M. G. Ehrhardt, K. Burns, M. C. Bicego, Sunlight-induced compositional alterations in the seawater-soluble fraction of a crude oil, Mar. Chem., 1992, 37, 53–64.

    Article  CAS  Google Scholar 

  7. D. Mackay, C. D. McAuliffe, Fate of hydrocarbons discharged at sea, Oil Chem. Pollut., 1988, 5, 1–20.

    Article  CAS  Google Scholar 

  8. N. S. Ahmed, A. M. Nassar, N. N. Zaki, H. K. Gharieb, Stability and rheology of heavy crude oil-in-water emulsion stabilized by an anionic-nonionic surfactant mixture, Pet. Sci. Technol., 1999, 17, 553–576.

    Article  CAS  Google Scholar 

  9. R. F. Lee, Photo-oxidation and photo-toxicity of crude and refined oils, Spill Sci. Technol. Bull., 2003, 8, 157–162.

    Article  CAS  Google Scholar 

  10. T. K. Dutta, S. Harayama, Fate of crude oil by the combination of photooxidation and biodegradation, Environ. Sci. Technol., 2000, 34, 1500–1505.

    Article  CAS  Google Scholar 

  11. R. L. Ziolli, W. F. Jardim, Photochemical transformations of water-soluble fraction (WSF) of crude oil in marine waters: A comparison between photolysis and accelerated degradation with TiO2 using GC-MS and UVF, J. Photochem. Photobiol., A, 2003, 155, 243–252.

    Article  CAS  Google Scholar 

  12. J. Lee, W. Choi, Photocatalytic degradation of N-nitrosodimethylamine: Mechanism, product distribution, and TiO2 surface modification, Environ. Sci. Technol., 2005, 39, 6800–6807.

    Article  CAS  PubMed  Google Scholar 

  13. A. Heller and J. R. Brock, Accelerated photooxidative dissolution of oil spills, in Aquatic and Surface Photochemistry, G. R. Helz, R. G. Zepp and D. G. Crosby, ed., CRC Press Inc. Boca Raton, FL, 1994, pp. 427–436.

    Google Scholar 

  14. A. Heller, J. Schwitzgebel and J. G. Ekerdt, Abstract 2nd International Symposium on New Trends in Photoelectrochemistry, University of Tokyo, 1994, p.1.

    Google Scholar 

  15. R. M. Garrett, I. J. Pickering, C. E. Haith, R. C. Prince, Photooxidation of crude oils, Environ. Sci. Technol., 1998, 32, 3719–3723.

    Article  CAS  Google Scholar 

  16. J. R. Payne, C. R. Phillips, Photochemistry of petroleum in water, Environ. Sci. Technol., 1985, 19, 569–579.

    Article  CAS  PubMed  Google Scholar 

  17. M. D’Auria, R. Racioppi, V. Velluzzi, Photodegradation of crude oil: liquid injection and headspace solid-phase microextraction for crude oil analysis by gas chromatography with mass spectrometer detector, J. Chrom. Sci., 2008, 46, 339–344.

    Article  Google Scholar 

  18. D. Clausse, F. Gomez, I. Pezron, L. Komunjer, C. Dalmazzone, Morphology characterizations of emulsions by differential scanning calorimetry, Adv. Colloid Interface Sci., 2005, 117, 59–74.

    Article  CAS  PubMed  Google Scholar 

  19. H. C. Genuino, E. C. Njagi, E. Benbow, G. E. Hoag, J. B. Collins, S. L. Suib, Enhancement of the photodegradation of N-nitrosodimethylamine (NDMA) in water using amorphous and platinum manganese oxide catalysts, J. Photochem. Photobiol., A, 2011, 217, 284–292.

    Article  CAS  Google Scholar 

  20. J. L. Rummel, A. M. McKenna, A. G. Marshall, J. R. Eyler, D. H. Powell, The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis, Rapid Commun. Mass Spectrom., 2010, 24, 784–790.

    Article  CAS  PubMed  Google Scholar 

  21. D. A. Lange, K. Sujata, H. M. Jennings, Characterization of cement–water systems, Scanning, 1990, 90, 75–76.

    Google Scholar 

  22. D. J. Stokes, B. L. Thiel, A. M. Donald, Direct observation of water–oil emulsion system in the liquid state by environmental scanning electron microscopy, Langmuir, 1998, 14, 4402–4408.

    Article  CAS  Google Scholar 

  23. B. Thiel, I. Bache, A. Fletcher, P. Meredith, A. Donald, An improved model for gaseous amplification in the environmental SEM, J. Microsc., 1997, 187, 143–157.

    Article  CAS  Google Scholar 

  24. R. G. Mathews, A. M. Donald, Conditions for imaging emulsions in the environmental scanning electron microscope, Scanning, 2002, 2, 75–85.

    Google Scholar 

  25. L. L. Schramm, Petroleum Emulsions Basic Principles, in Emulsions Fundamentals and Applications in the Petroleum Industry, L. L. Schramm, ed., American Chemical Society, Washington DC, 1992, pp. 1–49.

    Chapter  Google Scholar 

  26. S. Choi, E. Decker, L. Henson, L. Popplewell, D. McClemenents, Stability of citral in oil-in-water emulsions prepared with medium-chain triacylglycerols and triacetin, J. Agric. Food Chem., 2009, 57, 11349–11353.

    Article  CAS  PubMed  Google Scholar 

  27. F. Leal-Calderon, V. Schmitt and J. Bibette, Emulsion Science Basic Principles, 2nd edn., Springer Science+Business Media, LLC, New York, 2007, p.148.

    Google Scholar 

  28. D. P. Rimmer, A. A. Gregoli, J. A. Hamshar and E. Yildirim, Pipeline Emulsion Transportation for Heavy Oils, in Emulsions Fundamental and Applications in the Petroleum Industry, L. L. Schramm, ed., American Chemical Society, Washington DC, 1992, pp. 295–312.

    Chapter  Google Scholar 

  29. M. J. Schick, Nonionic Surfactants Physical Chemistry, Surfactant Science Series, Vol. 2, Marcel Dekker, New York, 1966.

    Google Scholar 

  30. N. N. Zaki, Surfactant stabilized crude oil-in-water emulsions for pipeline transportation of viscous crude oils, Colloids Surf., A, 1997, 125, 19–25.

    Article  CAS  Google Scholar 

  31. J. Czarnecki, Water-in-oil emulsions in recovery of hydrocarbons from oil sands, in Encyclopedic Handbooks of Emulsion Technology, J. Sjöblom, ed., Marcel Dekker Inc, New York, 2001, pp. 503–504.

    Google Scholar 

  32. P. Literathy, S. Haider, O. Samban, G. Morel, Experimental studies on biological and chemical oxidation of dispersed oil in seawater, Water Sci. Technol., 1989, 24, 845–856.

    Article  Google Scholar 

  33. M. Rondón, J. C. Pereira, P. Bouriat, A. Graciaa, J. Lachaise, J.-L. Salager, Breaking of water-in-crude-oil emulsions. 2. Influence of asphalthene concentration and diluent nature on demulsifier action, Energy Fuels, 2008, 22, 702–707.

    Article  CAS  Google Scholar 

  34. N. Shigemoto, R. Al-Maamari, B. Jibril, A. Hiramaya, M. Sueyoshi, Effect of water content and surfactant type on viscosity and stability of emulsified heavy Mukhaizna crude oil, Energy Fuels, 2007, 21, 1014–1018.

    Article  CAS  Google Scholar 

  35. L. Kong, J. K. Beattie, R. J. Hunter, Electroacoustic determination of size and charge of sunflower oil-in-water emulsions made by high-pressure homogenising, Chem. Eng. Process., 2001, 40, 421–429.

    Article  CAS  Google Scholar 

  36. M. Murillo, Z. Benzo, E. Marcano, C. Gomez, A. Garaboto, C. Marin, Determination of copper, iron and nickel in edible oils using emulsified solutions by ICP-AES, J. Anal. At. Spectrom., 1999, 14, 815–820.

    Article  CAS  Google Scholar 

  37. W. A. Rowe, K. P. Yates, X-ray fluorescence method for trace metals in refinery fluid catalytic cracking feedstocks, Anal. Chem., 1963, 35, 368–370.

    Article  CAS  Google Scholar 

  38. S. Ashrafizadeh, M. Kamran, Emulsification of heavy crude oil in water for pipeline transportation, J. Pet. Sci. Eng., 2010, 71, 205–211.

    Article  CAS  Google Scholar 

  39. P. Sebastião, C. Guedes Soares, Modelling the fate of oil spills at sea, Spill Sci. Technol. Bull., 1995, 2, 121–131.

    Article  Google Scholar 

  40. D. E. Nicodem, C. L. B. Guedes, R. J. Correa, Photochemistry of petroleum I. Systematic study of a brazilian intermediate crude oil, Mar. Chem., 1998, 63, 93–104.

    Article  CAS  Google Scholar 

  41. P. F. Pesarini, R. G. S. de Silva, R. J. Correa, D. E. Nicodem, N. C. de Lucas, Asphaltene concentration and composition alterations upon solar irradiation of petroleum, J. Photochem. Photobiol., A, 2010, 214, 48–53.

    Article  CAS  Google Scholar 

  42. R. J. Law, Hydrocarbon concentrations in water and sediments from UK marine waters, determined by fluorescence spectroscopy, Mar. Pollut. Bull., 1981, 12, 153–157.

    Article  CAS  Google Scholar 

  43. D. E. Nicodem, C. L. B. Guedes, M. Conceicao, Z. Fernandes, D. Severino, R. J. Correa, M. C. Coutinho, J. Silva, Photochemistry of petroleum, Progr. Reac. Kinet. Mec., 2001, 26, 219–238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Suib.

Additional information

† Electronic supplementary information (ESI) available: five figures and seven tables showing additional study details. See DOI: 10.1039/c2pp05275j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genuino, H.C., Horvath, D.T., King’ondu, C.K. et al. Effects of visible and UV light on the characteristics and properties of crude oil-in-water (O/W) emulsions. Photochem Photobiol Sci 11, 692–702 (2012). https://doi.org/10.1039/c2pp05275j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05275j

Navigation