Skip to main content
Log in

Photolysis of ortho-nitrobenzylic derivatives: the importance of the leaving group

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Quantum yields for the photoinduced release of seven different commonly used leaving groups (LGs) from the o-nitroveratryl protecting group were measured. It was found that these quantum yields depend strongly on the nature of the LGs. We show that the quantum efficiency with which the LGs are released correlates with the stabilization that these LGs provide to o-nitrobenzyl-type radicals because radical stabilizing groups weaken the C–H bond that is cleaved in the photoinduced hydrogen atom transfer step, and hence lower the barrier for this process. At the same time these substituents lower the endothermicity of the thermal hydrogen atom transfer and thus increase the barrier for the reverse process, thereby enhancing the part of the initially formed aci-nitro intermediates which undergo cyclization (which ultimately leads to LG release). Radical stabilization energies computed by DFT methods are thus a useful predictor of the relative efficiency with which LGs are photoreleased from o-nitrobenzyl protecting groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Merrifield, Solid Phase Peptide Synthesis. 1. Synthesis of a Tetrapeptide, J. Am. Chem. Soc., 1963, 85, 2149–2154.

    Article  CAS  Google Scholar 

  2. J. A. Barltrop and P. Schofield, Organic photochemistry. II. Some photosensitive protecting groups, J. Chem. Soc., 1965, 4758–4765.

    Google Scholar 

  3. J. A. Barltrop, P. J. Plant and P. Schofield, Photosensitive protective groups, J. Chem. Soc., Chem. Commun., 1966, 822–823.

    Google Scholar 

  4. A. Patchornik, B. Amit and R. B. Woodward, Photosensitive protecting groups, J. Am. Chem. Soc., 1970, 92, 6333–6335.

    Article  CAS  Google Scholar 

  5. V. N. R. Pillai, Photoremovable protecting groups in organic synthesis, Synthesis, 1980, 1–26.

    Google Scholar 

  6. C. G. Bochet, Photolabile protecting groups and linkers, J. Chem. Soc., Perkin. Trans. 1, 2002, 125–142.

    Google Scholar 

  7. A. P. Pelliccioli and J. Wirz, Photoremovable protecting groups: reaction mechanisms and applications, Photochem. Photobiol. Sci., 2002, 1, 441–458.

    Article  PubMed  Google Scholar 

  8. U. Jonas, A. del Campo, C. Kruger, G. Glasser and D. Boos, Colloidal assemblies on patterned silane layers, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5034–5039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. del Campo, D. Boos, H. W. Spiess and U. Jonas, Surface modification with orthogonal photosensitive silanes for sequential chemical lithography and site-selective particle deposition, Angew. Chem., Int. Ed., 2005, 44, 4707–4712.

    Article  CAS  Google Scholar 

  10. V. San Miguel, C. G. Bochet and A. del Campo, Wavelength-Selective Caged Surfaces: How Many Functional Levels Are Possible?, J. Am. Chem. Soc., 2011, 133, 5380–5388.

    Article  CAS  PubMed  Google Scholar 

  11. J. H. Kaplan, B. Forbush, III and J. F. Hoffman, Rapid photolytic release of adenosine 5′-triphosphate from a protected analog: utilization by the sodium:potassium pump of human red blood cell ghosts, Biochemistry, 1978, 17, 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  12. S. R. Adams and R. Y. Tsien, Controlling cell chemistry with caged compounds, Annu. Rev. Physiol., 1993, 55, 755–784.

    Article  CAS  PubMed  Google Scholar 

  13. G. Mayer and A. Heckel, Biologically active molecules with a “light switch”, Angew. Chem., Int. Ed., 2006, 45, 4900–4921.

    Article  CAS  Google Scholar 

  14. K. C. Nicolaou, C. W. Hummel, E. N. Pitsinos, M. Nakada, A. L. Smith, K. Shibayama and H. Saimoto, Total synthesis of calicheamicin gamma-1(I), J. Am. Chem. Soc., 1992, 114, 10082–10084.

    Article  CAS  Google Scholar 

  15. S. P. A. Fodor, R. P. Rava, X. H. C. Huang, A. C. Pease, C. P. Holmes and C. L. Adams, Multiplexed biochemical assays with biological chips, Nature, 1993, 364, 555–556.

    Article  CAS  PubMed  Google Scholar 

  16. M. C. Pirrung, How to make a DNA chip, Angew. Chem., Int. Ed., 2002, 41, 1276–1289.

    Article  CAS  Google Scholar 

  17. G. C. R. Ellis-Davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology, Nat. Methods, 2007, 4, 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Schwörer and J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds in solution I. 2-nitrotoluene: Thermodynamic and kinetic parameters of the aci-nitro tautomer, Helv. Chim. Acta, 2001, 84, 1441–1458.

    Article  Google Scholar 

  19. Y. V. Il’ichev, M. A. Schwörer and J. Wirz, Photochemical Reaction Mechanisms of 2-Nitrobenzyl Compounds: Methyl Ethers and Caged ATP, J. Am. Chem. Soc., 2004, 126, 4581–4595.

    Article  PubMed  CAS  Google Scholar 

  20. M. Gaplovsky, Y. V. Il’ichev, Y. Kamdzhilov, S. V. Kombarova, M. Mac, M. A. Schworer and J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds: 2-Nitrobenzyl alcohols form 2-nitroso hydrates by dual proton transfer, Photochem. Photobiol. Sci., 2005, 4, 33–42.

    Article  CAS  PubMed  Google Scholar 

  21. B. Hellrung, Y. Kamdzhilov, M. Schworer and J. Wirz, Photorelease of alcohols from 2-nitrobenzyl ethers proceeds via hemiacetals and may be further retarded by buffers intercepting the primary aci-nitro intermediates, J. Am. Chem. Soc., 2005, 127, 8934–8935.

    Article  CAS  PubMed  Google Scholar 

  22. J. E. T. Corrie, A. Barth, V. R. N. Munasinghe, D. R. Trentham and M. C. Hutter, Photolytic Cleavage of 1-(2-Nitrophenyl)ethyl Ethers Involves Two Parallel Pathways and Product Release Is Rate-Limited by Decomposition of a Common Hemiacetal Intermediate, J. Am. Chem. Soc., 2003, 125, 8546–8554.

    Article  CAS  PubMed  Google Scholar 

  23. F. Bley, K. Schaper and H. Gorner, Photoprocesses of molecules with 2-nitrobenzyl protecting groups and caged organic acids, Photochem. Photobiol., 2008, 84, 162–171.

    CAS  PubMed  Google Scholar 

  24. T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer and P. Gilch, Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene, Phys. Chem. Chem. Phys., 2010, 12, 15653–15664.

    Article  CAS  PubMed  Google Scholar 

  25. Y. V. Il’ichev and J. Wirz, Rearrangements of 2-nitrobenzyl compounds. 1. Potential energy surface of 2-nitrotoluene and its isomers explored with ab initio and density functional theory methods, J. Phys. Chem. A, 2000, 104, 7856–7870.

    Article  CAS  Google Scholar 

  26. P. Sebej, T. Šolomek, L. Hroudna, P. Brancova and P. Klan, Photochemistry of 2-Nitrobenzylidene Acetals, J. Org. Chem., 2009, 74, 8647–8658.

    Article  CAS  PubMed  Google Scholar 

  27. A. Blanc and C. G. Bochet, Isotope effects in photochemistry. 1. o-Nitrobenzyl alcohol derivatives, J. Am. Chem. Soc., 2004, 126, 7174–7175.

    Article  CAS  PubMed  Google Scholar 

  28. A. Blanc and C. G. Bochet, Isotope effects in photochemistry: Application to chromatic orthogonality, Org. Lett., 2007, 9, 2649–2651.

    Article  CAS  PubMed  Google Scholar 

  29. L. Kammari, T. Šolomek, B. P. Ngoy, D. Heger and P. Klan, Orthogonal Photocleavage of a Monochromophoric Linker, J. Am. Chem. Soc., 2010, 132, 11431–11433.

    Article  CAS  PubMed  Google Scholar 

  30. Y. V. Il’ichev, Rearrangements of 2-nitrobenzyl compounds. 2. Substituent effects on the reactions of the quinonoid intermediates, J. Phys. Chem. A, 2003, 107, 10159–10170.

    Article  CAS  Google Scholar 

  31. T. Schmierer, F. Bley, K. Schaper and P. Gilch, The early processes in the photochemistry of ortho-nitrobenzyl acetate, J. Photochem. Photobiol., A, 2011, 217, 363–368.

    Article  CAS  Google Scholar 

  32. A. Migani, V. Leyva, F. Feixas, T. Schmierer, P. Gilch, I. Corral, L. Gonzalez and L. Blancafort, Ultrafast irreversible phototautomerization of o-nitrobenzaldehyde, Chem. Commun., 2011, 47, 6383–6385.

    Article  CAS  Google Scholar 

  33. M. Yamaji, X. C. Cai, M. Sakamoto, M. Fujitsuka and T. Majima, Photodecomposition Profiles of beta-Bond Cleavage of Phenylphenacyl Derivatives in the Higher Triplet Excited States during Stepwise Two-Color Two-Laser Flash Photolysis, J. Phys. Chem. A, 2008, 112, 11306–11311.

    Article  CAS  PubMed  Google Scholar 

  34. M. Yamaji, X. Cai, M. Sakamoto, M. Fujitsuka and T. Majima, alpha-Bond Dissociation of p-Phenylbenzoyl Derivatives in the Higher Triplet Excited State Studied by Two-Color Two-Laser Flash Photolysis, J. Phys. Chem. A, 2009, 113, 1696–1703.

    Article  CAS  PubMed  Google Scholar 

  35. A. S. Menon, G. P. F. Wood, D. Moran and L. Radom, Bond dissociation energies and radical stabilization energies: An assessment of contemporary theoretical procedures, J. Phys. Chem. A, 2007, 111, 13638–13644.

    Article  CAS  PubMed  Google Scholar 

  36. A. S. Menon, D. J. Henry, T. Bally and L. Radom, Effect of substituents on the stabilities of multiply-substituted carbon-centered radicals, Org. Biomol. Chem., 2011, 9, 3636–3657.

    Article  CAS  PubMed  Google Scholar 

  37. A. Barth, S. R. Martin, J. E. T. Corrie, Decarboxylation is a significant reaction pathway for photolabile calcium chelators and related compounds, Photochem. Photobiol. Sci., 2006, 5, 107–115.

    Article  CAS  PubMed  Google Scholar 

  38. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki and S. Iwata, Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules, in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981.

    Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09 (Revision A.02), Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

  40. J. P. Merrick, D. Moran and L. Radom, An evaluation of harmonic vibrational frequency scale factors, J. Phys. Chem. A, 2007, 111, 11683–11700.

    Article  CAS  PubMed  Google Scholar 

  41. S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation, J. Chem. Phys., 2006, 124, 034108.

    Article  PubMed  CAS  Google Scholar 

  42. Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc., 2007, 120, 215–241.

    Article  CAS  Google Scholar 

  43. T. Schwabe and S. Grimme, Theoretical thermodynamics for large molecules: Walking the thin line between accuracy and computational cost, Acc. Chem. Res., 2008, 41, 569–579.

    Article  CAS  PubMed  Google Scholar 

  44. A. S. Menon, G. P. F. Wood, D. Moran and L. Radom, Bond dissociation energies and radical stabilization energies: An assessment of contemporary theoretical procedures (vol 111A, pg 13638, 2007), J. Phys. Chem. A, 2008, 112, 5554–5554.

    Article  CAS  Google Scholar 

  45. Y. Zhao and D. G. Truhlar, Density functionals with broad applicability in chemistry, Acc. Chem. Res., 2008, 41, 157–167.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Zhao and D. G. Truhlar, How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals?, J. Phys. Chem. A, 2008, 112, 1095–1099.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Bally or Christian G. Bochet.

Additional information

On leave from Masaryk University, Brno, Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šolomek, T., Mercier, S., Bally, T. et al. Photolysis of ortho-nitrobenzylic derivatives: the importance of the leaving group. Photochem Photobiol Sci 11, 548–555 (2012). https://doi.org/10.1039/c1pp05308f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05308f

Navigation