Skip to main content
Log in

Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The perfluoroalkyl compounds (PFCs), perfluoroalkyl sulfonates (PFXS) and perfluoroalkyl carboxylates (PFXA) are environmentally persistent and recalcitrant towards most conventional water treatment technologies. Here, we complete an in depth examination of the UV-254 nm production of aquated electrons during iodide photolysis for the reductive defluorination of six aquated perfluoroalkyl compounds (PFCs) of various headgroup and perfluorocarbon tail length. Cyclic voltammograms (CV) show that a potential of +2.0 V (vs. NHE) is required to induce PFC oxidation and −1.0 V is required to induce PFC reduction indicating that PFC reduction is the thermodynamically preferred process. However, PFCs are observed to degrade faster during UV(254 nm)/persulfate (S2O82−) photolysis yielding sulfate radicals (E◦ = +2.4 V) as compared to UV(254 nm)/iodide (I-) photolysis yielding aquated electrons (E◦ = −2.9 V). Aquated electron scavenging by photoproduced triiodide (I3), which achieved a steady-state concentration proportional to [PFOS]0, reduces the efficacy of the UV/iodide system towards PFC degradation. PFC photoreduction kinetics are observed to be dependent on PFC headgroup, perfluorocarbon chain length, initial PFC concentration, and iodide concentration. From 2 to 12, pH had no observable effect on PFC photoreduction kinetics, suggesting that the aquated electron was the predominant reductant with negligible contribution from the H-atom. A large number of gaseous fluorocarbon intermediates were semi-quantitatively identified and determined to account for ~25% of the initial PFOS carbon and fluorine. Reaction mechanisms that are consistent with kinetic observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Moody and J. A. Field, Environ. Sci. Technol., 2000, 34, 3864–3870.

    Article  CAS  Google Scholar 

  2. M. M. Schultz, D. F. Barofsky and J. A. Field, Environ. Eng. Sci., 2003, 20, 487–501.

    Article  CAS  Google Scholar 

  3. N. Yamashita, S. Taniyasu, G. Petrick, S. Wei, T. Gamo, P. K. S. Lam and K. Kannan, Chemosphere, 2008, 70, 1247–1255.

    Article  CAS  PubMed  Google Scholar 

  4. C. J. Young, V. I. Furdui, J. Franklin, R. M. Koerner, D. C. G. Muir and S. A. Mabury, Environ. Sci. Technol., 2007, 41, 3455–3461.

    Article  CAS  PubMed  Google Scholar 

  5. V. I. Furdui, P. W. Crozier, E. J. Reiner and S. A. Mabury, Chemosphere, 2008, 73, S24–S30.

    Article  CAS  PubMed  Google Scholar 

  6. R. Guo, Q. F. Zhou, Y. Q. Cai and G. B. Jiang, Talanta, 2008, 75, 1394–1399.

    Article  CAS  PubMed  Google Scholar 

  7. M. H. Li, Environ. Toxicol., 2009, 24, 95–101.

    Article  PubMed  CAS  Google Scholar 

  8. V. Ochoa-Herrera, R. Sierra-Alvarez, A. Somogyi, N. E. Jacobsen, V. H. Wysocki and J. A. Field, Environ. Sci. Technol., 2008, 42, 3260–3264.

    Article  CAS  PubMed  Google Scholar 

  9. K. R. Rhoads, E. M. L. Janssen, R. G. Luthy and C. S. Criddle, Environ. Sci. Technol., 2008, 42, 2873–2878.

    Article  CAS  PubMed  Google Scholar 

  10. P. Rostkowski, N. Yamashita, I. M. K. So, S. Taniyasu, P. K. S. Lam, J. Falandysz, K. T. Lee, S. K. Kim, J. S. Khim, S. H. Im, J. L. Newsted, P. D. Jones, K. Kannan and J. P. Giesy, Environ. Toxicol. Chem., 2006, 25, 2374–2380.

    Article  CAS  PubMed  Google Scholar 

  11. M. K. So, S. Taniyasu, N. Yamashita, J. P. Giesy, J. Zheng, Z. Fang, S. H. Im and P. K. S. Lam, Environ. Sci. Technol., 2004, 38, 4056–4063.

    Article  CAS  PubMed  Google Scholar 

  12. C. D. Vecitis, H. Park, J. Cheng, B. T. Mader and M. R. Hoffmann, Front. Environ. Sci. Eng. China, 2009, 3, 129–151.

    Article  CAS  Google Scholar 

  13. X. L. Zhao, J. D. Li, Y. L. Shi, Y. Q. Cai, S. F. Mou and G. B. Jiang, J. Chromatogr., A, 2007, 1154, 52–59.

    Article  CAS  Google Scholar 

  14. V. Ochoa-Herrera and R. Sierra-Alvarez, Chemosphere, 2008, 72, 1588–1593.

    Article  CAS  PubMed  Google Scholar 

  15. H. Hori, E. Hayakawa, H. Einaga, S. Kutsuna, K. Koike, T. Ibusuki, H. Kiatagawa and R. Arakawa, Environ. Sci. Technol., 2004, 38, 6118–6124.

    Article  CAS  PubMed  Google Scholar 

  16. H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita and S. Kutsuna, Environ. Sci. Technol., 2005, 39, 2383–2388.

    Article  CAS  PubMed  Google Scholar 

  17. H. Hori, A. Yamamoto, K. Koike, S. Kutsuna, I. Osaka and R. Arakawa, Water Res., 2007, 41, 2962–2968.

    Article  CAS  PubMed  Google Scholar 

  18. J. Chen and P. Zhang, Water Sci. Technol., 2006, 54, 317–325.

    Article  CAS  PubMed  Google Scholar 

  19. J. Chen, P. Zhang and L. Zhang, Chem. Lett., 2006, 35, 230–231.

    Article  Google Scholar 

  20. R. Dillert, D. Bahnemann and H. Hidaka, Chemosphere, 2007, 67, 785–792.

    Article  CAS  PubMed  Google Scholar 

  21. H. Park, C. D. Vecitis, J. Cheng, W. Choi, B. T. Mader and M. R. Hoffmann, J. Phys. Chem. A, 2009, 113, 690–696.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Qu, C. Zhang, F. Li, J. Chen and Q. Zhou, Water Res., 2010, 44, 2939–2947.

    Article  CAS  PubMed  Google Scholar 

  23. H. Hori, Y. Nagaoka, T. Sano and S. Kutsuna, Chemosphere, 2008, 70, 800–806.

    Article  CAS  PubMed  Google Scholar 

  24. T. Y. Campbell, C. D. Vecitis, B. T. Mader and M. R. Hoffmann, J. Phys. Chem. A, 2009, 113, 9834–9842.

    Article  CAS  PubMed  Google Scholar 

  25. J. Cheng, C. D. Vecitis, H. Park, B. T. Mader and M. R. Hoffmann, Environ. Sci. Technol., 2008, 42, 8057–8063.

    Article  CAS  PubMed  Google Scholar 

  26. J. Cheng, C. D. Vecitis, H. Park, B. T. Mader and M. R. Hoffmann, Environ. Sci. Technol., 2010, 44, 445–450.

    Article  CAS  PubMed  Google Scholar 

  27. H. Moriwaki, Y. Takagi, M. Tanaka, K. Tsuruho, K. Okitsu and Y. Maeda, Environ. Sci. Technol., 2005, 39, 3388–3392.

    Article  CAS  PubMed  Google Scholar 

  28. C. D. Vecitis, H. Park, J. Cheng, B. T. Mader and M. R. Hoffmann, J. Phys. Chem. A, 2008, 112, 4261–4270.

    Article  CAS  PubMed  Google Scholar 

  29. C. D. Vecitis, H. Park, J. Cheng, B. T. Mader and M. R. Hoffmann, J. Phys. Chem. C, 2008, 112, 16850–16857.

    Article  CAS  Google Scholar 

  30. C. D. Vecitis, Y. Wang, J. Cheng, H. Park, B. T. Mader and M. R. Hoffmann, Environ. Sci. Technol., 2010, 44, 432–438.

    Article  CAS  PubMed  Google Scholar 

  31. L. C. T. Shoute, J. P. Mittal and P. Neta, J. Phys. Chem., 1996, 100, 3016–3019.

    Article  CAS  Google Scholar 

  32. L. C. T. Shoute, J. P. Mittal and P. Neta, J. Phys. Chem., 1996, 100, 11355–11359.

    Article  CAS  Google Scholar 

  33. P. L. Watson, T. H. Tulip and I. Williams, Organometallics, 1990, 9, 1999–2009.

    Article  CAS  Google Scholar 

  34. P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18, 1637–1755.

    Article  CAS  Google Scholar 

  35. T. Yamamoto, Y. Noma, S. I. Sakai and Y. Shibata, Environ. Sci. Technol., 2007, 41, 5660–5665.

    Article  CAS  PubMed  Google Scholar 

  36. L. Lehr, M. T. Zanni, C. Frischkorn, R. Weinkauf and D. M. Neumark, Science, 1999, 284, 635–638.

    Article  CAS  PubMed  Google Scholar 

  37. J. W. T. Spinks and R. J. Woods, An Introduction to Radiation Chemistry, John Wiley & Sons, 3rd edn, 1990.

    Google Scholar 

  38. R. O. Rahn, M. I. Stephan, J. R. Bolton, E. Goren, P.-S. Shaw and K. R. Lykke, Photochem. Photobiol., 2003, 78, 146–152.

    Article  CAS  PubMed  Google Scholar 

  39. B. Guan, J. Zhi, X. Zhang, T. Murakami and A. Fujishima, Elec-trochem. Commun., 2007, 9, 2817–2821.

    Article  CAS  Google Scholar 

  40. K. E. Carter and J. Farrell, Environ. Sci. Technol., 2008, 42, 6111–6115.

    Article  CAS  PubMed  Google Scholar 

  41. D. J. Barker, D. M. Brewis, R. H. Dahm and L. R. J. Hoy, Electrochim. Acta, 1978, 23, 1107–1110.

    Article  CAS  Google Scholar 

  42. A. A. Pud, G. S. Shapoval, V. P. Kukhar, O. E. Mikulina and L. L. Gervits, Electrochim. Acta, 1995, 40, 1157–1164.

    Article  CAS  Google Scholar 

  43. C. Combellas, F. Kanoufi and A. Thiebault, J. Phys. Chem. B, 2003, 107, 10894–10905.

    Article  CAS  Google Scholar 

  44. M. C. Sauer, R. A. Crowell and I. A. Shkrob, J. Phys. Chem. A, 2004, 108, 5490–5502.

    Article  CAS  Google Scholar 

  45. X. Y. Yu, Z. C. Bao and J. R. Barker, J. Phys. Chem. A, 2004, 108, 295–308.

    Article  CAS  Google Scholar 

  46. R. O. Rahn, Photochem. Photobiol., 1997, 66, 450–455.

    Article  CAS  Google Scholar 

  47. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513–886.

    Article  CAS  Google Scholar 

  48. J. Jortner, R. Levine, M. Ottolenghi and G. Stein, J. Phys. Chem., 1961, 65, 1232–1238.

    Article  CAS  Google Scholar 

  49. T. Rigg and J. Weiss, J. Chem. Soc., 1952, 4198–4204.

    Google Scholar 

  50. H.-G. Boit, Beilstein Handbook of Organic Chemistry, Springer-Verlag, Berlin, 1975, Vol. 2.

  51. Environment directorate joint meeting of the chemicals committee and the working party on chemicals pesticides and biotechnology, Organization for economic co-operation and development, Paris, 2002.

  52. Material safety data sheet, Merck.

  53. H. Li, D. Ellis and D. Mackay, J. Chem. Eng. Data, 2007, 52, 1580–1584.

    Article  CAS  Google Scholar 

  54. Environmental and health assessment of perfluorooctane sulfonic acid and its salts, 3M report, 2003.

  55. S. Kutsuna and H. Hori, Atmos. Environ., 2008, 42, 8883–8892.

    Article  CAS  Google Scholar 

  56. K. U. Goss, Environ. Sci. Technol., 2008, 42, 5032–5032.

    Article  CAS  Google Scholar 

  57. D. Brooke, A. Footitt and T. A. Nwaogu, Environmental risk evaluation report: perfluorooctane sulfonate (PFOS), Environment Agency, 2004.

    Google Scholar 

  58. P. Neta, R. E. Huie and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 1027–1284.

    Article  CAS  Google Scholar 

  59. E. Hayon, J. Phys. Chem., 1961, 65, 1937–1940.

    Article  CAS  Google Scholar 

  60. E. Szajdzinska-Pietek and J. L. Gebicki, Res. Chem. Intermed., 2000, 26, 897–912.

    Article  CAS  Google Scholar 

  61. L. Huang, W. B. Dong and H. Q. Hou, Chem. Phys. Lett., 2007, 436, 124–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunwoong Park.

Additional information

Electronic supplementary information (ESI) available: Additional figures regarding the chemical actinometry, cyclic voltammetry, and GC-MS quantification of perfluorooctyl iodide. See DOI: 10.1039/c1pp05270e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Vecitis, C.D., Cheng, J. et al. Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm. Photochem Photobiol Sci 10, 1945–1953 (2011). https://doi.org/10.1039/c1pp05270e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05270e

Navigation