Skip to main content
Log in

Direct probing of ion pair formation using a symmetric triangulenium dye

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The 2,6,10-tris(dialkylamino)trioxatriangulenium dyes (ATOTA+) are highly stabilised cationic chromophores with D3h symmetry. The symmetry gives rise to a degeneracy of the main electronic transition. In low polarity solvents significant splitting of this degenerate transition is observed and assigned to ion pair formation. Ion pairing of the 2,6,10-tris(dioctylamino)trioxatriangulenium ion with Cl, BF4, PF6 and TRISPHAT anions was studied using absorption spectroscopy. A clear correlation is found between the size of the anion and the splitting of the ATOTA+ transitions. In benzene the Cl salt displays a splitting of 1955 cm−1, while the salt of the much larger TRISPHAT ion has a splitting of 1543 cm−1. TD-DFT calculations confirm the splitting of the states and provide a detailed insight into the electronic structure of the ion pairs. The different degree of splitting in different ion pairs is found to correlate with the magnitude of the electric field generated in each ion pair, thus leading to the conclusion that the effect seen is an internal Stark effect. By insertion of an amphiphilic derivative of the ATOTA+ chromophore in an oriented lamellar liquid crystal, it was possible to resolve the two bands of the double peak spectrum and show their perpendicular orientation in the molecular framework, as predicted by the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Johnson, Fluorescent probes for living cells, Histochem. J., 1998, 30, 123–140.

    Article  CAS  PubMed  Google Scholar 

  2. J. W. Lichtman and J. A. Conchello, Fluorescence microscopy, Nat. Methods, 2005, 2, 910–919.

    Article  CAS  PubMed  Google Scholar 

  3. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman and R. Y. Tsien, Review -the fluorescent toolbox for assessing protein location and function, Science, 2006, 312, 217–224.

    Article  CAS  PubMed  Google Scholar 

  4. A. M. Smith, M. C. Mancini and S. Nie, Bioimaging: Second window for in vivo imaging, Nat. Nanotechnol., 2009, 4, 710–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. V. Ntziachristos, Going deeper than microscopy: The optical imaging frontier in biology, Nat. Methods, 2010, 7, 603–614.

    Article  CAS  PubMed  Google Scholar 

  6. S. R. Adams, A. T. Harootunian, Y. J. Buechler, S. S. Taylor and R. Y. Tsien, Fluorescence ratio imaging of cyclic-amp in single cells, Nature, 1991, 349, 694–697.

    Article  CAS  PubMed  Google Scholar 

  7. J. W. Bell and N. M. Hext, Supramolecular optical chemosensors for organic analytes, Chem. Soc. Rev., 2004, 33, 589–598.

    CAS  PubMed  Google Scholar 

  8. S. M. Borisov and O. S. Wolfbeis, Optical biosensors, Chem. Rev., 2008, 108, 423–461.

    Article  CAS  PubMed  Google Scholar 

  9. C. McDonagh, C. S. Burke and B. D. MacCraith, Optical chemical sensors, Chem. Rev., 2008, 108, 400–422.

    Article  CAS  PubMed  Google Scholar 

  10. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra and G. B. Behera, Cyanines during the 1990s: A review, Chem. Rev., 2000, 100, 1973–2012.

    Article  CAS  PubMed  Google Scholar 

  11. B. Baisch, D. Raffa, U. Jung, O. M. Magnussen, C. Nicolas, J. Lacour, J. Kubitschke and R. Herges, Mounting freestanding molecular functions onto surfaces: The platform approach, J. Am. Chem. Soc., 2009, 131, 442–443.

    Article  CAS  PubMed  Google Scholar 

  12. S. K. Narasimhan, D. J. Kerwood, L. Wu, J. Li, R. Lombardi, T. B. Freedman and Y.-Y. Luk, Induced folding by chiral nonplanar aromatics, J. Org. Chem., 2009, 74, 7023–7033.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Haketa, S. Sasaki, N. Ohta, H. Masunaga, H. Ogawa, N. Mizuno, F. Araoka, H. Takezoe and H. Maeda, Oriented salts: Dimension-controlled charge-by-charge assemblies from planar receptor-anion complexes, Angew. Chem., Int. Ed., 2010, 49, 10079–10083.

    Article  CAS  Google Scholar 

  14. S. Kuhn, B. Baisch, U. Jung, T. Johannsen, J. Kubitschke, R. Herges and O. Magnussen, Self-assembly of triazatriangulenium-based functional adlayers on au(111) surfaces, Phys. Chem. Chem. Phys., 2010, 12, 4481–4487.

    Article  CAS  PubMed  Google Scholar 

  15. J. B. Simonsen, F. Westerlund, D. W. Breiby, N. Harrit and B. W. Laursen, Columnar self-assembly and alignment of planar carbenium ions in Langmuir-Blodgett films, Langmuir, 2011, 27, 792–799.

    Article  CAS  PubMed  Google Scholar 

  16. J. B. Simonsen, K. Kjaer, P. Howes, K. Nørgaard, T. Bjørnholm, N. Harrit and B. W. Laursen, Close columnar packing of triangulenium ions in langmuir films, Langmuir, 2009, 25, 3584–3592.

    Article  CAS  PubMed  Google Scholar 

  17. B. W. Laursen, J. Reynisson, K. V. Mikkelsen, K. Bechgaard and N. Harrit, 2,6,10-tris(dialkylamino)trioxatriangulenium salts: A new promising fluorophore. Ion-pair formation and aggregation in nonpolar solvents, Photochem. Photobiol. Sci., 2005, 4, 568–576.

    Article  CAS  PubMed  Google Scholar 

  18. L. M. Lewis and G. L. Indig, Solvent effects on the spectroscopic properties of triarylmethane dyes, Dyes Pigm., 2000, 46, 145–154.

    Article  CAS  Google Scholar 

  19. D. F. Duxbury, The photochemistry and photophysics of triphenyl-methane dyes in solid and liquid-media, Chem. Rev., 1993, 93, 381–433.

    Article  CAS  Google Scholar 

  20. J. E. Selwyn and J. I. Steinfeld, Aggregation of equilibriums of xanthene dyes, J. Phys. Chem., 1972, 76, 762–774.

    Article  CAS  Google Scholar 

  21. G. U. Bublitz and S. G. Boxer, Stark spectroscopy: Applications in chemistry, biology, and materials science, Annu. Rev. Phys. Chem., 1997, 48, 213–242.

    Article  CAS  PubMed  Google Scholar 

  22. R. P. Haugland, Handbook of fluorescent probes and research chemicals, Molecular Probes, Eugene, Oregon, 1996.

    Google Scholar 

  23. G. N. Lewis, T. T. Magel and D. Lipkin, Isomers of crystal violet ion. Their absorption and re-emission of light, J. Am. Chem. Soc., 1942, 64, 1774–1782.

    Article  CAS  Google Scholar 

  24. H. B. Lueck, J. L. McHale and W. D. Edwards, Symmetry-breaking solvent effects on the electronic structure and spectra of a series of triphenylmethane dyes, J. Am. Chem. Soc., 1992, 114, 2342–2348.

    Article  CAS  Google Scholar 

  25. F. C. Adam and W. T. Simpson, Electronic spectrum of 4, 4′-bis-dimethylamino fuchsone and related triphenylmethane dyes, J. M ol. Spectrosc., 1959, 3, 363–380.

    Article  CAS  Google Scholar 

  26. C. S. Oliveira, K. P. Branco, M. S. Baptista and G. L. Indig, Solvent and concentration effects on the visible spectra of tri-para-dialkylamino-substituted triarylmethane dyes in liquid solutions, Spectrochim. Acta, Part A, 2002, 58, 2971–2982.

    Article  Google Scholar 

  27. J. Korppi-Tommola and R. W. Yip, Solvent effects on the visible absorption spectrum of crystal violet, Can. J. Chem., 1981, 59, 191–194.

    Article  CAS  Google Scholar 

  28. F. Feichtmayr and J. Schlag, Influence of solvent and concentration on the spectra of triphenylmethane dyes, Berichte der Bunsen-Gesellschaft, 1964, 68, 95–102.

    Article  CAS  Google Scholar 

  29. B. W. Laursen, F. C. Krebs, M. F. Nielsen, K. Bechgaard, J. B. Chris-tensen and N. Harrit, 2,6,10-tris(dialkylamino)trioxatriangulenium ions. Synthesis, structure, and properties of exceptionally stable car-benium ions, J. Am. Chem. Soc., 1998, 120, 12255–12263.

    Article  CAS  Google Scholar 

  30. S. Dileesh and K. R. Gopidas, Photophysical and electron transfer studies of a stable carbocation, Chem. Phys. Lett., 2000, 330, 397–402.

    Article  CAS  Google Scholar 

  31. S. Dileesh and K. R. Gopidas, Photoinduced electron transfer in azatriangulenium salts, J. Photochem. Photobiol., A, 2004, 162, 115–120.

    Article  CAS  Google Scholar 

  32. A. Pothukuchy, C. L. Mazzitelli, M. L. Rodriguez, B. Tuesuwan, M. Salazar, J. S. Brodbelt and S. M. Kerwin, Duplex and quadruplex DNA binding and photocleavage by trioxatriangulenium lone, Biochemistry, 2005, 44, 2163–2172.

    Article  CAS  PubMed  Google Scholar 

  33. B. W. Laursen and T. J. Sørensen, Synthesis of super stable triangule-nium dye, J. Org. Chem., 2009, 74, 3183–3185.

    Article  CAS  PubMed  Google Scholar 

  34. T. J. Sørensen, B. W. Laursen, R. Luchowski, T. Shtoyko, I. Akopova, Z. Gryczynski and I. Gryczynski, Enhanced fluorescence emission of me-adota(+) by self-assembled silver nanoparticles on a gold film, Chem. Phys. Lett., 2009, 476, 46–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. F. Westerlund, C. B. Hildebrandt, T. J. Sørensen and B. W. Laursen, Trihydroxytrioxatriangulene -an extended fluorescein and a ratiometric ph sensor, Chem.-Eur. J., 2010, 16, 2992–2996.

    Article  CAS  PubMed  Google Scholar 

  36. T. J. Sørensen and B. W. Laursen, Synthesis and optical properties of trioxatriangulenium dyes with one and two peripheral amino substituents, J. Org. Chem., 2010, 75, 6182–6190.

    Article  PubMed  CAS  Google Scholar 

  37. B. W. Laursen and F. C. Krebs, Synthesis of a triazatriangulenium salt, Angew. Chem., Int. Ed., 2000, 39, 3432–3434.

    Article  CAS  Google Scholar 

  38. B. W. Laursen and F. C. Krebs, Synthesis, structure, and properties of azatriangulenium salts, Chem.-Eur. J., 2001, 7, 1773–1783.

    Article  CAS  PubMed  Google Scholar 

  39. F. Favarger, C. Goujon-Ginglinger, D. Monchaud and J. Lacour, Large-scale synthesis and resolution of trisphat [tris(tetrachlorobenzenediolato) phosphate(v)] anion, J. Org. Chem., 2004, 69, 8521–8524.

    Article  CAS  PubMed  Google Scholar 

  40. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic-behavior, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098–3100.

    Article  CAS  Google Scholar 

  41. C. T. Lee, W. T. Yang and R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B, 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  42. A. D. Becke, Density-functional thermochemistry.3. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  43. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, 98, 11623–11627.

    Article  CAS  Google Scholar 

  44. T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange-correlation functional using the coulomb-attenuating method (cam-b3lyp), Chem. Phys. Lett., 2004, 393, 51–57.

    Article  CAS  Google Scholar 

  45. A. Dreuw, J. L. Weisman and M. Head-Gordon, Long-range chargetransfer excited states in time-dependent density functional theory require non-local exchange, J. Chem. Phys., 2003, 119, 2943–2946.

    Article  CAS  Google Scholar 

  46. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai and K. Hirao, A long-range-corrected time-dependent density functional theory, J. Chem. Phys., 2004, 120, 8425–8433.

    Article  CAS  PubMed  Google Scholar 

  47. M. J. G. Peach, P. Benfield, T. Helgaker and D. J. Tozer, Excitation energies in density functional theory: An evaluation and a diagnostic test, J. Chem. Phys., 2008, 128, 044118.

    Article  PubMed  CAS  Google Scholar 

  48. DALTON, a molecular electronic structure program, see http://www.kjemi.uio.no/software/dalton/dalton.html, 2005, Release 2.0.

  49. J. Lacour, G. Bernardinelli, V. Russell and I. Dance, Crystal packing interpretation of the association of chiral threefold propeller ions: Trisphat anion with a triarylcarbenium cation, CrystEngComm, 2002, 4, 165–170.

    Article  CAS  Google Scholar 

  50. R. Friman, I. Danielsson and P. Stenius, Lamellar mesophase with high contents of water -X-ray-investigations of the sodium octanoate decanol water system, J. Colloid Interface Sci., 1982, 86, 501–514.

    Article  CAS  Google Scholar 

  51. K. Fontell, L. Mandell, H. Lehtinen and P. Ekwall, 3-component system sodium caprylate -decanol -water.3. Structure of mesophases at 20 degrees c, Acta Polytechnica Scandinavica-Chemistry Including Metallurgy Series, 1968, 1–56.

    Google Scholar 

  52. B. Nordén, G. Lindblom and I. Jonas, Linear dichroism spectroscopy as a tool for studying molecular orientation in model membrane systems, J. Phys. Chem., 1977, 81, 2086–2093.

    Article  Google Scholar 

  53. B. Nordén, A. Rodger and T. R. Dafforn, Linear dichroism and circular dichroism -a textbook on polarized-light spectroscopy, RS. Publishing, Cambridge, UK, 2010.

    Google Scholar 

  54. Y. Marcus and G. Hefter, Ion pairing, Chem. Rev., 2006, 106, 4585–4621.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo W. Laursen.

Additional information

Electronic supplementary information (ESI) available: Optimized geometries for ATOTA·X, calculated vacuum excitation energies, calculated excitation energies for the ion pair geometry of ATOTA+, calculated transition dipole moments, absorption titrations and additional spectroscopy. See DOI: 10.1039/c1pp05253e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westerlund, F., Elm, J., Lykkebo, J. et al. Direct probing of ion pair formation using a symmetric triangulenium dye. Photochem Photobiol Sci 10, 1963–1973 (2011). https://doi.org/10.1039/c1pp05253e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05253e

Navigation